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This report covers the period May 24 2001 through January 31 2003 and documents
work performed by SRI International for the DARPA NEST program through AFRL-
WPAFB Contract F33615-01-C-1908.

Statically scheduled systems such as the time-triggered architecture (TTA) have advan-
tages over dynamically scheduled systems in that they can achieve higher resource utiliza-
tion, can more easily tolerate certain failure modes (e.g., babbling), and it is easier to pro-
vide assurance arguments for their safety and dependability. On the other hand, statically
scheduled system are less flexible and less able to adapt to changing mission requirements
or to a significant change in available resources. Traditionally, such adaptation had to be
pre-planned and implemented as a mode change.

In this project, our original goal was to develop technology for reconfiguring time-
triggered architectures during operation. This requires the ability to adapt existing sched-
ules or to calculate new ones online: computations that used to require an overnight run
must be reduced to seconds. Our initial work focussed on TTA and on fast scheduling. The
first two papers below describe these aspects.

However, because there was no interest in time-triggered solutions among other pro-
gram participants, nor opportunity to integrate this approach with the Open Experimental
Platforms, we focussed our later work on the run-time synthesis aspects. This led to the
breakthrough that we call “lazy theorem proving” which combines the fast global search
of modern SAT solvers with an efficient decision procedure for a combination of impor-
tant theories including linear arithmetic. At a stroke, this allows all applications of SAT
solving (e.g., planning, diagnosis, bounded model checking) to be extended from models
described on purely Boolean structures to those over the richer domains covered by the
decision procedures.

The outputs of this research are documented in a series of technical papers that are
collected in Part II of this report. Below, we provide an index and abstracts for these papers.
All of them were selected for presentation at major scientific conferences, and we also
provide citations for these publications.

Bus Architectures for Safety-Critical Embedded Systems by John Rushby. Published
as [1].

Our initial work focussed on the Time Triggered Architecture (TTA). This paper
presents a comparison of TTA with other architectures for safety-critical embedded
systems.

Abstract Embedded systems for safety-critical applications often integrate mul-
tiple “functions” and must generally be fault-tolerant. These requirements lead to
a need for mechanisms and services that provide protection against fault propaga-
tion and ease the construction of distributed fault-tolerant applications. A number of
bus architectures have been developed to satisfy this need. This paper reviews the
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requirements on these architectures, the mechanisms employed, and the services pro-
vided. Four representative architectures (SAFEbusTM, SPIDER, TTA, and FlexRay)
are briefly described.

On the Composition of Real-Time Schedulers by Weirong Wang and Aloysius K. Mok.
Published as [2].

The disadvantage of architectures such as TTA is that they depend on pre-computed
schedules. These are expensive to compute, and inflexible. This paper develops meth-
ods for constructing schedules for composite systems from those of their components
and provides first steps toward more flexible static schedules.

Abstract A complex real-time embedded system may consist of multiple applica-
tion components each of which has its own timeliness requirements and is scheduled
by component-specific schedulers. At run-time, the schedules of the components are
integrated to produce a system-level schedule of jobs to be executed. We formalize
the notions of schedule composition, task group composition and component com-
position. Two algorithms for performing composition are proposed. The first one is
an extended Earliest Deadline First algorithm which can be used as a composability
test for schedules. The second algorithm, the Harmonic Component Composition
algorithm (HCC) provides an online admission test for components. HCC applies a
rate monotonic classification of workloads and is a hard real-time solution because
responsive supply of a shared resource is guaranteed for in-budget workloads. HCC
is also efficient in terms of composability and requires low computation cost for both
admission control and dispatch of resources.

Lazy Theorem Proving for Bounded Model Checking over Infinite Domains by
Leonardo de Moura, Harald Rueß, and Maria Sorea. Published as [3].

Our work on the run-time synthesis aspect of NEST focussed on integration of de-
cision procedures with SAT solving. This is the seminal paper that first described
the integration based on “lazy theorem proving.” Facts discovered by the decision
procedures are communicated to the SAT solver as additional lemmas that prune its
search space. The method is “lazy” in that these lemmas are generated only as they
are needed.

Abstract We investigate the combination of propositional SAT checkers with
domain-specific theorem provers as a foundation for bounded model checking over
infinite domains. Given a program M over an infinite state type, a linear temporal
logic formula ’ with domain-specific constraints over program states, and an upper
bound k , our procedure determines if there is a falsifying path of length k to the
hypothesis that M satisfies the specification ’. This problem can be reduced to the
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satisfiability of Boolean constraint formulas. Our verification engine for these kinds
of formulas is lazy in that propositional abstractions of Boolean constraint formulas
are incrementally refined by generating lemmas on demand from an automated anal-
ysis of spurious counterexamples using theorem proving. We exemplify bounded
model checking for timed automata and for RTL level descriptions, and investigate
the lazy integration of SAT solving and theorem proving.

Lemmas on Demand for Satisfiability Solvers by Leonardo de Moura and Harald Rueß.
Published as [4].

Another way to look at “lazy theorem proving” is as a method for generating “lem-
mas on demand.” This paper describes the method, and the interaction between the
decision procedures and the SAT solver in more detail.

Abstract We investigate the combination of propositional SAT checkers with con-
straint solvers for domain-specific theories such as linear arithmetic, arrays, lists and
the combination thereof. Our procedure realizes a lazy approach to satisfiability
checking of propositional constraint formulas by iteratively refining Boolean formu-
las based on lemmas generated on demand by constraint solvers.

Embedded Deduction With ICS by Leonardo de Moura, Harald Rueß, John Rushby, and
Natarajan Shankar. Published as [5].

An implementation of the method described in the previous two papers is made freely
available by SRI as the tool ICS (available from ics.csl.sri.com). This paper
describes the design decisions and capabilities of ICS.

Abstract Formal analyses can provide valuable assurance for high confidence soft-
ware and systems. The analyses can range from strong typechecking through test case
generation and static analysis to model checking and full verification. In all cases,
the tools that support the analyses use formal deduction in some way or other. ICS
is a fully automatic, high-performance decision procedure for a broad combination
of theories that can be embedded in all tools of this kind to provide them with a core
deductive capability of exceptional power and performance. We describe the design
choices underlying ICS and the capabilities it provides.

Bounded Model Checking and Induction: From Refutation to Verification by
Leonardo de Moura, Harald Rueß, and Maria Sorea. Published as [6].

One of the main applications of ICS is bounded model checking (BMC). Originally,
BMC was seen as a refutational (i.e., debugging) activity, but it was soon applied to
synthesis problems such as planning and test case generation. Then we discovered
that variations on BMC can be used to perform verification in a very effective and
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automated manner. This paper describes the methods by which BMC with ICS is
extended to verification problems.

Abstract We explore the combination of bounded model checking and induction
for proving safety properties of infinite-state systems. In particular, we define a gen-
eral k -induction scheme and prove completeness thereof. A main characteristic of
our methodology is that strengthened invariants are generated from failed k -induction
proofs. This strengthening step requires quantifier-elimination, and we propose a lazy
quantifier elimination procedure, which delays expensive computations of disjunc-
tive normal forms when possible. The effectiveness of induction based on bounded
model checking and invariant strengthening is demonstrated using infinite-state sys-
tems ranging from communication protocols to timed automata and (linear) hybrid
automata.
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Bus Architectures
For Safety-Critical Embedded Systems �

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025, USA
rushby@csl.sri.com

Abstract. Embedded systems for safety-critical applications often integrate mul-
tiple “functions” and must generally be fault-tolerant. These requirements lead to
a need for mechanisms and services that provide protection against fault propaga-
tion and ease the construction of distributed fault-tolerant applications. A number
of bus architectures have been developed to satisfy this need. This paper reviews
the requirements on these architectures, the mechanisms employed, and the ser-
vices provided. Four representative architectures (SAFEbusTM, SPIDER, TTA,
and FlexRay) are briefly described.

1 Introduction

Embedded systems generally operate as closed-loop control systems: they repeatedly
sample sensors, calculate appropriate control responses, and send those responses to
actuators. In safety-critical applications, such as fly- and drive-by-wire (where there are
no direct connections between the pilot and the aircraft control surfaces, nor between
the driver and the car steering and brakes), requirements for ultra-high reliability de-
mand fault tolerance and extensive redundancy. The embedded system then becomes a
distributed one, and the basic control loop is complicated by mechanisms for synchro-
nization, voting, and redundancy management.

Systems used in safety-critical applications have traditionally been federated, mean-
ing that each “function” (e.g., autopilot or autothrottle in an aircraft, and brakes or sus-
pension in a car) has its own fault-tolerant embedded control system with only minor
interconnections to the systems of other functions. This provides a strong barrier to
fault propagation: because the systems supporting different functions do not share re-
sources, the failure of one function has little effect on the continued operation of others.
The federated approach is expensive, however (because each function has its own repli-
cated system), so recent applications are moving toward more integrated solutions in
which some resources are shared across different functions. The new danger here is

�
This research was supported by the DARPA MOBIES and NEST programs through USAF
Rome Laboratory contracts F33615-00-C-1700 and F33615-01-C-1908, and by NASA Lan-
gley Research Center under contract NAS1-20334 and Cooperative Agreement NCC-1-377
with Honeywell Incorporated.
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that faults may propagate from one function to another; partitioning is the problem of
restoring to integrated systems the strong defenses against fault propagation that are
naturally present in federated systems. A dual issue is that of strong composability:
here we would like to take separately developed functions and have them run without
interference on an integrated system platform with negligible integration effort.

The problems of fault tolerance, partitioning, and strong composability are chal-
lenging ones. If handled in an ad-hoc manner, their mechanisms can become the pri-
mary sources of faults and of unreliability in the resulting architecture [10]. Fortunately,
most aspects of these problems are independent of the particular functions concerned,
and they can be handled in a principled and correct manner by generic mechanisms
implemented as an architecture for distributed embedded systems.

One of the essential services provided by this kind of architecture is communica-
tion of information from one distributed component to another, so a (physical or logical)
communication bus is one of its principal components, and the protocols used for con-
trol and communication on the bus are among its principal mechanisms. Consequently,
these architectures are often referred to as buses (or databuses), although this term un-
derstates their complexity, sophistication, and criticality. In truth, these architectures are
the safety-critical core of the applications built above them, and the choice of services to
provide to those applications, and the mechanisms of their implementation, are issues
of major importance in the construction and certification of safety-critical embedded
systems.

In this paper, I survey some of the issues in the design of bus architectures for safety-
critical embedded systems. I hope this will prove useful to potential users of these ar-
chitectures and will alert others to the benefits of building on such well-considered
foundations. My presentation is derived from a review of four representative architec-
tures: two of these were primarily designed for aircraft applications and two for auto-
mobiles. The economies of scale make the automobile buses quite inexpensive—which
then renders them attractive in certain aircraft applications. The aircraft buses consid-
ered are the Honeywell SAFEbus [1, 7] (the backplane dat bus used in the Boeing 777
Airplane Information Management System) and the NASA SPIDER [11] (an architec-
ture being developed as a demonstrator for certification under the new DO254 guide-
lines [15]); the automobile buses considered are the TTTech Time-Triggered Architec-
ture (TTA) [8, 24], recently adopted by Audi and Volkswagen for automobile applica-
tions, and by Honeywell for avionics and aircraft controls functions, and FlexRay [3],
which is being developed by a consortium of BMW, DaimlerChrysler, Motorola, and
Philips. A detailed comparison of these four architectures, along with more extended
discussion of the issues, is available as a technical report [17].

The paper is organized as follows: Section 2 examines general issues in time-
triggered systems and bus architectures, Section 3 examines the fault hypotheses under
which they operate, and Section 4 describes the services that they provide; Section 5
briefly describes the four representative architectures, and conclusions are provided in
Section 6.
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2 Time-Triggered Buses

The architectures considered here are called “buses” because multicast or broadcast
communication is one of the services that they provide, and their implementations are
based on a logical or physical bus. In a generic bus architecture, application programs
run in host computers, and sensors and actuators are also connected to the hosts; an
interconnect medium provides broadcast communications, and interface devices con-
nect the hosts to the interconnect. The interfaces and interconnect comprise the bus;
the combination of a host and its interface(s) is referred to as a node. Realizations of
the interconnect may be a physical (passive) bus, as shown in Figure 1, or a centralized
(active) hub, as shown in Figure 2. The interfaces may be physically proximate to the
hosts, or they may form part of a more complex central hub. Many of the components
will be replicated for fault tolerance.

All four of the buses considered here are primarily time triggered; this is a fun-
damental design choice that influences many aspects of their architectures and mech-
anisms, and sets them apart from fundamentally event-triggered buses such as Byte-
flight, CAN, Ethernet, LonWorks, or Profibus. The time-triggered and event-triggered
approaches to systems design find favor in different application areas, and each has
strong advocates; for integrated, safety-critical systems, however, the time-triggered
approach is generally preferred. “Time triggered” means that all activities involving the
bus, and often those involving components attached to the bus, are driven by the passage
of time (“if it is 20 ms since the start of the frame, then read the sensor and broadcast
its value”); this is distinguished from “event triggered,” which means that activities are
driven by the occurrence of events (“if the sensor reading changes, then broadcast its
new value”). A prime contrast between these two approaches is their locus of control:
a time-triggered system controls its own activity and interacts with the environment ac-
cording to an internal schedule, whereas an event-triggered system is under the control
of its environment and must respond to stimuli as they occur.
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Event-triggered systems allow flexible allocation of resources and this is attractive
when demands are highly variable. However, in safety-critical applications it is neces-
sary to guarantee some basic quality of service to all participants, even (or especially)
in the presence of faults. Because the clients of the bus architecture are real-time em-
bedded control systems, the required guarantees include predictable communications
with low latency and low jitter (assured bandwidth is not enough). The problem with
event-driven buses is that events arriving at different nodes may cause them to contend
for access to the bus, so some form of media access control (i.e., a distributed mutual
exclusion algorithm) is needed to ensure that each node eventually is able to transmit
without interruption. The important issue is how predictable is the access achieved by
each node, and how strong is the assurance that the predictions remain true in the pres-
ence of faults.

Buses such as Ethernet resolve contention probabilistically and therefore can pro-
vide only probabilistic guarantees of timely access, and no assurance at all in the pres-
ence of faults. Buses for non-safety-critical embedded systems such as CAN, Lon-
Works, or Profibus use various priority, preassigned slot, or token schemes to resolve
contention deterministically. In CAN, for example, the message with the lowest num-
ber always wins the arbitration and therefore has to wait only for the current message
to finish, while other messages must also wait for any lower-numbered messages. Thus,
although contention is resolved deterministically, latency increases with load and can be
bounded with only probabilistic guarantees—and these can be quite weak in the pres-
ence of faults (e.g., the current message may be retransmitted in the case of transmission
failure, thereby delaying the next message, even if this has higher priority). Further-
more, faulty nodes may not adhere to expected patterns of use and may make excessive
demands for service, thereby reducing that available to others. Event-triggered buses
for safety-critical applications add various mechanisms to limit such demands. ARINC
629 (an avionics data bus used in the Boeing 777), for example, uses a technique some-
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times referred to as “minislotting” that requires each node to wait a certain period after
sending a message before it can contend to send another. Even here, however, latency is
a function of load, so the Byteflight automobile protocol developed by BMW extends
this mechanism with guaranteed, preallocated slots for critical messages. But even pre-
allocated slots provide no protection against a faulty node that fails to recognize them.
The worst manifestation of this kind of fault is the so-called “babbling idiot” failure
where a faulty node transmits constantly, thereby compromising the operation of the
entire bus.

In a time-triggered bus, there is a static preallocation of communication bandwidth
in the form of a global schedule: each node knows the schedule and knows the time,
and therefore knows when it is allowed to send messages, and when it should expect
to receive them. Thus, contention is resolved at design time (as the schedule is con-
structed), when all its consequences can be examined, rather than at run time. A static
schedule makes possible the control of the babbling idiot failure mode. This is achieved
by interposing an independent component, called a bus guardian, that allows each node
to transmit on the bus only when it is allowed to do so. The guardian must know when
its node is allowed to access the bus, which is difficult to achieve in an event-triggered
system but is conceptually simple in a time triggered system: the guardian has an in-
dependent clock and independent knowledge of the schedule and allows its node to
broadcast only when indicated by the schedule.

Because all communication is triggered by the global schedule, there is no need
to attach source or destination addresses to messages sent over a time-triggered bus:
each node knows the sender and intended recipients of each message by virtue of the
time at which it is sent. Elimination of the address fields not only reduces the size of
each message, thereby greatly increasing the message bandwidth of the bus (messages
are typically short in embedded control applications), but it also eliminates a potential
source of serious faults: namely, the possibility that a faulty node may send messages
to the wrong recipients or, worse, may masquerade as a sender other than itself.

Fault-tolerant clock synchronization is a fundamental requirement for a time-
triggered bus architecture: the abstraction of a global clock is realized by each node
having a local clock that is closely synchronized with the clocks of all other nodes.
Tightness of the bus schedule, and hence the throughput of the bus, is strongly related
to the quality of global clock synchronization that can be achieved—and this is related
to the quality of the clock oscillators local to each node, and to the algorithm used to
synchronize them. There are two basic classes of algorithm for clock synchronization:
those based on averaging and those based on events. Averaging works by each node
measuring the skew between its clock and that of each other node (e.g., by comparing
the arrival time of each message with its expected value) then setting its clock to some
“average” value. A simple average (e.g., the mean or median) over all clocks may be af-
fected by wild readings from faulty clocks (which might provide different, or missing,
readings to different observers), so we need a “fault-tolerant average” that is largely
insensitive to a certain number of readings from faulty clocks. Schneider [18] gives
a general description that applies to all averaging clock synchronization algorithms;
these algorithms differ only in their choice of fault-tolerant average. The Welch-Lynch
algorithm [25] is a popular choice that is characterized by use of the “fault-tolerant
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midpoint” as its averaging function. Event-based algorithms rely on nodes being able
to sense events directly on the interconnect: each node broadcasts a “ready” event when
it is time to synchronize and sets its clock when it has seen a certain number of events
from other nodes. Depending on the fault model, additional waves of “echo” or “ac-
cept” events may be needed to make this fault tolerant. The number of faulty nodes that
can be tolerated, and the quality of synchronization that can be achieved, depend on
the details of the algorithm, and on the fault hypothesis under which it operates. The
event-based algorithm of Srikanth and Toueg [21] is particularly attractive because it
achieves optimal accuracy.

3 Fault Hypotheses and Fault Containment Units

Safety-critical aerospace functions are generally required to have failure rates less than
�������

per hour [5], and an architecture that is intended to support several such func-
tions should provide assurance of failure rates better than

��� �	��

per hour. Similar re-

quirements apply to cars (although higher rates of loss are accepted for individual cars
than aircraft, there are vastly more of them, so the required failure rates are similar).
Consumer-grade electronics devices have failure rates many orders of magnitude worse
than this, so redundancy and fault tolerance are essential elements of a bus architecture.
Redundancy may include replication of the entire bus, of the interconnect and/or the in-
terfaces, or decomposition of those elements into smaller subcomponents that are then
replicated.

Fault tolerance takes two forms in these architectures: first is that which ensures that
the bus itself does not fail, second is that which eases the construction of fault-tolerant
applications. Each of these mechanisms must be constructed and validated against an
explicit fault hypothesis, and must deliver specified services (that may be specified to
degrade in acceptable ways in the presence of faults). The fault hypothesis must de-
scribe the modes (i.e., kinds) of faults that are to be tolerated, and their maximum
number and arrival rate. The fault hypothesis must also identify the different fault con-
tainment units (FCUs) in the design: these are the components that can independently
be afflicted by faults. The division of an architecture into separate FCUs needs care-
ful justification: there must be no propagation of faults from one FCU to another, and
no “common mode failures” where a single physical event produces faults in multiple
FCUs. Only physical faults (those caused by damage to, defects in, or aging of the de-
vices employed, or by external disturbances such as cosmic rays, and electromagnetic
interference) are considered in this analysis: design faults must be excluded, and must
be shown to be so by stringent assurance and certification processes.

The assumption that failures of separate FCUs are independent must be ensured by
careful design and assured by stringent analysis. True independence generally requires
that different FCUs are served by different power supplies, and are physically and elec-
trically isolated from each other. Providing this level of independence is expensive and
it is generally undertaken only in aircraft applications. In cars, it is common to make
some small compromises on independence: for example, the guardians may be fabri-
cated on the same chip as the interface (but with their own clock oscillators), or the
interface may be fabricated on the same chip as the host processor. It is necessary to

13



examine these compromises carefully to ensure that the loss in independence applies
only to fault modes that are benign, extremely rare, or tolerated by other mechanisms.

A fault mode describes the kind of behavior that a faulty FCU may exhibit. The same
fault may exhibit different modes at different levels of a protocol hierarchy: for example,
at the electrical level, the fault mode of a faulty line driver may be that it sends an
intermediate voltage (one that is neither a digital 0 nor a digital 1), while at the message
level the mode of the same fault may be “Byzantine,” meaning that different receivers
interpret the same message in different ways (because some see the intermediate voltage
as a 0, and others as a 1). Some protocols can tolerate Byzantine faults, others cannot;
for those that cannot, we must show that the fault mode is controlled at the underlying
electrical level.

The basic dimensions that a fault can affect are value, time, and space. A value fault
is one that causes an incorrect value to be computed, transmitted, or received (whether
as a physical voltage, a logical message, or some other representation); a timing fault
is one that causes a value to be computed, transmitted, or received at the wrong time
(whether too early, too late, or not at all); a spatial proximity fault is one where all
matter in some specified volume is destroyed (potentially afflicting multiple FCUs).
Bus-based interconnects of the kind shown in Figure 1 are vulnerable to spatial prox-
imity faults: all redundant buses necessarily come into close proximity at each node, and
general destruction in that space could sever or disrupt them all. Interconnect topolo-
gies with a central hub are far more resilient in this regard: a spatial proximity fault
that destroys one or more nodes does not disrupt communication among the others (the
hub may need to isolate the lines to the destroyed nodes in case these are shorted), and
destruction of a hub can be tolerated if there is a duplicate in another location.

There are many ways to classify the effects of faults in any of the basic dimensions.
One classification that has proved particularly effective in analysis of the types of al-
gorithms that underlie the architectures considered here is the hybrid fault model of
Thambidurai and Park [23]. In this classification, the effect of a fault may be manifest,
meaning that it is reliably detected (e.g., a fault that causes an FCU to cease transmitting
messages), symmetric meaning that whatever the effect, it is the same for all observers
(e.g., an off-by-1 error), or arbitrary, meaning that it is entirely unconstrained. In par-
ticular, an arbitrary fault may be asymmetric or Byzantine, meaning that its effect is
perceived differently by different observers (as in the intermediate voltage example).

The great advantage to designs that can tolerate arbitrary fault modes is that we do
not have to justify assumptions about more specific fault modes: a system is shown to
tolerate (say) two arbitrary faults by proving that it works in the presence of two faulty
FCUs with no assumptions whatsoever on the behavior of the faulty components. A
system that can tolerate only specific fault modes may fail if confronted by a different
fault mode, so it is necessary to provide assurance that such modes cannot occur. It is
this absence of assumptions that is the attraction, in safety-critical contexts, of systems
that can tolerate arbitrary faults. This point is often misunderstood and such systems
are derided as being focused on asymmetric or Byzantine faults, “which never arise in
practice.” Byzantine faults are just one manifestation of arbitrary behavior, and cannot
simply be asserted not to occur (in fact, they have been observed in several systems
that have been monitored sufficiently closely). One situation that is likely to provoke
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asymmetric manifestations is a slightly out of specification (SOS) fault, such as the
intermediate electrical voltage mentioned earlier. SOS faults in the timing dimension
include those that put a signal edge very close to a clock edge, or that have signals with
very slow rise and fall times (i.e., weak edges). Depending on the timing of their own
clock edges, some receivers may recognize and latch such a signal, others may not,
resulting in asymmetric or Byzantine behavior.

FCUs may be active (e.g., a processor) or passive (e.g., a bus); while an arbitrary-
faulty active component can do anything, a passive component may change, lose, or
delay data, but it cannot spontaneously create a new datum. Keyed checksums or digital
signatures can sometimes be used to reduce the fault modes of an active FCU to those
of a passive one. (An arbitrary-faulty active FCU can always create its own messages,
but it cannot create messages purporting to come from another FCU if it does not know
the key of that FCU; signatures need to be managed carefully for this reduction in fault
mode to be credible.)

Any fault-tolerant architecture will fail if subjected to too many faults; generally
speaking, it requires more redundancy to tolerate an arbitrary fault than a symmetric
one, which in turn requires more redundancy than a manifest fault. The most effective
fault-tolerant algorithms make this tradeoff automatically between number and diffi-
culty of faults tolerated. For example, the clock synchronization algorithm of [16] can
tolerate � arbitrary faults, � symmetric, and � manifest ones simultaneously provided
� , the number of FCUs, satisfies ����� �	��
��
��� . It is provably impossible (i.e., it can
be proven that no algorithm can exist) to tolerate � arbitrary faults in clock synchro-
nization with fewer than � ��� �

FCUs (unless digital signatures are employed—which
is equivalent to reducing the severity of the arbitrary fault mode).

Because it is algorithmically much easier to tolerate simple failure modes, some
architectures (e.g., SAFEbus) arrange FCUs (the “Bus Interface Units” in the case of
SAFEbus) in self-checking pairs: if the members of a pair disagree, they go offline,
ensuring that the effect of their failure is seen as a manifest fault (i.e., one that is easily
tolerated). Most architectures also employ substantial self-checking in each FCU; any
FCU that detects a fault will shut down, thereby ensuring that its failure will be manifest.
(This kind of operation is often called fail silence). Even with extensive self-checking
and pairwise-checking, it may be possible for some fault modes to “escape,” so it is
generally necessary to show either that the mechanisms used have complete coverage
(i.e., there will be no violation of fail silence), or to design the architecture so that it can
tolerate the “escape” of at least one arbitrary fault.

Some architectures can tolerate only a single fault at a time, but can reconfigure to
exclude faulty FCUs and are then able to tolerate additional faults. In such cases, the
fault arrival rate is important: faults must not arrive faster than the architecture can
reconfigure. The architectures considered here operate according to static schedules,
which consist of “rounds” or “frames” that are executed repeatedly in a cyclic fashion.
The acceptable fault arrival rate is often then expressed in terms of faults per round
(or the inverse). It is usually important that every node is scheduled to make at least
one broadcast in every round, since this is how fault status is indicated (and hence how
reconfiguration is triggered).
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Historical experience and analysis must be used to show that the hypothesized
modes, numbers, and arrival rate are realistic, and that the architecture can indeed oper-
ate correctly under those hypotheses for its intended mission time. But sometimes things
go wrong: the system may experience many simultaneous faults (e.g., from unantici-
pated high-intensity radiated fields (HIRF)), or other violations of its fault hypothesis.
We cannot guarantee correct operation in such cases (otherwise our fault hypothesis
was too conservative), but safety-critical systems generally are constructed to a “never
give up” philosophy and will attempt to continue operation in a degraded mode. The
usual method of operation in “never give up” mode is that each node reverts to local
control of its own actuators using the best information available (e.g., each brake node
applies braking force proportional to pedal pressure if it is still receiving that input, and
removes all braking force if not), while at the same time attempting to regain coordi-
nation with its peers. Although it is difficult to provide assurance of correct operation
during these upsets, it may be possible to provide assurance that the system returns to
normal operation once the faults cease (assuming they were transients) using the ideas
of self-stabilization [20].

Restart during operation may be necessary if HIRF or other environmental influ-
ences lead to violation of the fault hypothesis and cause a complete failure of the bus.
Notice that this failure must be detected by the bus, and the restart must be automatic
and very fast: most control systems can tolerate loss of control inputs for only a few
cycles—longer outages will lead to loss of control. For example, Heiner and Thurner
estimate that the maximum transient outage time for a steer-by-wire automobile appli-
cation is 50ms [6].

Restart is usually initiated when an interface detects no activity on any bus line for
some interval; that interface will then transmit some “wake up” message on all lines. Of
course, it is possible that the interface in question is faulty (and there was bus activity all
along but that interface did not detect it), or that two interfaces decide simultaneously
to send the “wake up” call. The first possibility must be avoided by careful checking,
preferably by independent units (e.g., both interfaces of a pair, or an interface and its
guardian); the second requires some form of collision detection and resolution: this
should be deterministic to guarantee an upper bound on the time to reach resolution (that
will allow a single interface can send an uninterrupted “wake up” message) and, ideally,
should not depend on collision detection (because this cannot be done reliably). Notice
that it must be possible to perform startup and restart reliably even in the presence of
faulty components.

4 Services

The essential basic purpose of these bus architectures is to make it possible to build
reliable distributed applications; a desirable purpose is to make it straightforward to
build such applications. The basic services provided by the bus architectures consid-
ered here comprise clock synchronization, time-triggered activation, and reliable mes-
sage delivery. Some of the architectures provide additional services; their purpose is
to assist straightforward construction of reliable distributed applications by providing
these services in an application-independent manner, thereby relieving the applications
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of the need to implement these capabilities themselves. Not only does this simplify the
construction of application software, it is sometimes possible to provide better services
when these are implemented at the architecture level, and it is also possible to provide
strong assurance that they are implemented correctly.

Applications that perform safety-critical functions must generally be replicated for
fault tolerance. There are many ways to organize fault-tolerant replicated computations,
but a basic distinction is between those that use exact agreement, and those that use ap-
proximate agreement. Systems that use approximate agreement generally run several
copies of the application in different nodes, each using its own sensors, with little co-
ordination across the different nodes. The motivation for this is a “folk belief” that it
promotes fault tolerance: coordination is believed to introduce the potential for com-
mon mode failures. Because different sensors cannot be expected to deliver exactly the
same readings, the outputs (i.e., actuator commands) computed in the different nodes
will also differ. Thus, the only way to detect faulty outputs is by looking for values that
differ by “a lot” from the others. Hence, these systems use some form of selection or
threshold voting to select a good value to send to the actuators, and similar techniques
to identify faulty nodes that should be excluded from the configuration. A difficulty
for applications of the kind considered here is that hosts accumulate state that diverges
from that of others over time (e.g., velocity and position as a result of integrating ac-
celeration), and they execute mode switches that are discrete decisions based on local
sensor values (e.g., change the gain schedule in the control laws if the altitude, or tem-
perature, is above a specific value). Thus small differences in sensor readings can lead
to major differences in outputs and this can mislead the approximate selection or vot-
ing mechanisms into choosing a faulty value, or excluding a nonfaulty node. The fix to
these problems is to attempt to coordinate discrete mode switches and periodically to
bring state data into convergence. But these fixes are highly application specific, and
they are contrary to the original philosophy that motivated the choice of approximate
agreement—hence, there is a good chance of doing them wrong. There are numerous
examples that justify this concern; several that were discovered in flight tests are docu-
mented by Mackall and colleagues [10]. The essential points of Mackall’s data is that all
the failures observed in flight test were due to bugs in the design of the fault tolerance
mechanisms themselves, and all these bugs could be traced to difficulties in organizing
and coordinating systems based on approximate agreement.

Systems based on exact agreement face up to the fact that coordination among repli-
cated computations is necessary, and they take the necessary steps to do it right. If we
are to use exact agreement, then every replica must perform the same computation on
the same data: any disagreement on the outputs then indicates a fault; comparison can
be used to detect those faults, and majority voting to mask them. A vital element in
this approach to fault tolerance is that replicated components must work on the same
data: thus, if one node reads a sensor, it must distribute that reading to all the redundant
copies of the application running in other nodes. Now a fault in that distribution mecha-
nism could result in one node getting one value and another a different one (or no value
at all). This would abrogate the requirement that all replicas obtain identical inputs, so
we need to employ mechanisms to overcome this behavior.
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The problem of distributing data consistently in the presence of faults is variously
called interactive consistency, consensus, atomic broadcast, or Byzantine agreement
[9, 12]. When a node transmits a message to several receivers, interactive consistency
requires the following two properties to hold.

Agreement: All nonfaulty receivers obtain the same message (even if the transmitting
node is faulty).

Validity: If the transmitter is nonfaulty, then nonfaulty receivers obtain the message
actually sent.

Algorithms for achieving these requirements in the presence of arbitrary faults necessar-
ily involve more than a single data exchange (basically, each receiver must compare the
value it received against those received by others). It is provably impossible to achieve
interactive consistency in the presence of � arbitrary faults unless there are at least
� � � �

FCUs, 
 � �
�

disjoint communication paths between them, and � �
�

levels (or
“rounds”) of communication. The number of FCUs and the number of disjoint paths
required, but not the number of rounds, can be reduced by using digital signatures.

The problem might seem moot in architectures that employ a physical bus, since a
bus surely cannot deliver values inconsistently (so the agreement property is achieved
trivially). Unfortunately, it can—though it is likely to be a very rare event. The scenarios
involving SOS faults presented earlier exemplify some possibilities.

Dealing properly with very rare events is one of the attributes that distinguishes a
design that is fit for safety-critical systems from one that is not. It follows that either
the application software must perform interactive consistency for itself (incurring the
cost of �

�

messages to establish consistency across � nodes in the presence of a single
arbitrary fault), or the bus architecture must do it.

The first choice is so unattractive that it vitiates the whole purpose of a fault-tolerant
bus architecture. Most bus architectures therefore provide some type of interactively
consistent message broadcast as a basic service. In addition, most architectures take
steps to reduce the incidence of asymmetric transmissions (i.e., those that appear as one
value to some receivers, and as different values, or the absence of values, to others). As
noted, SOS faults are among the most plausible sources of asymmetric transmissions.
SOS faults that cause asymmetric transmissions can arise in either the value or time do-
mains (e.g., intermediate voltages, or weak edges, respectively). In those architectures
that employ a bus guardian in a central hub or “in series” with each interface, the bus
guardians are a possible point of intervention for the control of SOS faults: a suitable
guardian can reshape, in both value and time domains, the signal sent to it by the con-
troller. Of course, the guardian could be faulty and may make matters worse—so this
approach makes sense only when there are independent guardians on each of two (or
more) replicated interconnects. Observe that for credible signal reshaping, the guardian
must have a power supply that is independent of that of the controller (faults in power
supply are the most likely cause of intermediate voltages and weak edges).

Interactively consistent message broadcast provides the foundation for fault toler-
ance based on exact agreement. There are several ways to use this foundation. One
arrangement, confusingly called the state machine approach [19], is based on majority
voting: application replicas run on a number of different nodes, exchange their output
values, and deliver a majority vote to the actuators.
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Another arrangement is based on self-checking (either by individuals or pairs) so
that faults result in fail-silence. This will be detected by other nodes, and some backup
application running in those other nodes can take over. The architecture can assist this
master/shadow arrangement by providing services that support the rollover from one
node to another. One such service automatically substitutes a backup node for a failed
master (both the master and the backup occupy the same slot in the schedule, but the
backup is inhibited from transmitting unless the master is failed). A variant has both
master and backup operating in different slots, but the backup inhibits itself unless
it is informed that the master has failed. A further variation, called compensation,
applies when different nodes have access to different actuators: none is a direct backup
to any other, but each changes its operation when informed that others have failed (an
example is car braking: separate nodes controlling the braking force at each wheel will
redistribute the force when informed that one of their number has failed).

The variations on master/shadow described above all depend on a “failure notifica-
tion,” or equivalently a “membership” service. The crucial requirement on such a ser-
vice is that it must produce consistent knowledge: that is, if one nonfaulty node thinks
that a particular node has failed, then all other nonfaulty nodes must hold the same
opinion—otherwise, the system will lose coordination, with potentially catastrophic
results (e.g., if the nodes controlling braking at different wheels make different adjust-
ments to their braking force based on different assessments of which others have failed).
Notice that this must also apply to a node’s knowledge of its own status: a naı̈ve view
might assume that a node that is receiving messages and seeing no problems in its own
operation should assume it is in the membership. But if this node is unable to transmit,
all other nodes will have removed it from their memberships and will be making suit-
able compensation on the assumption that this node has entered its “blackout” mode
(and is, for example, applying no force to its brake). It could be catastrophic if this node
does not adopt the consensus view and continues operation (e.g., applying force to its
brake) based on its local assessment of its own health.

A membership service operates as follows. Each node maintains a private member-
ship list, which is intended to comprise all and only the nonfaulty nodes. Since it can
take a while to diagnose a faulty node, we have to allow the common membership to
contain at most one faulty node. Thus, a membership service must satisfy the following
two requirements.

Agreement: The membership lists of all nonfaulty nodes are the same.
Validity: The membership lists of all nonfaulty nodes contain all nonfaulty nodes and

at most one faulty node.

These requirements can be achieved only under benign fault hypotheses (it is prov-
ably impossible to diagnose an arbitrary-faulty node with certainty). When unable to
maintain accurate membership, the best recourse is to maintain agreement, but sacrifice
validity (nonfaulty nodes that are not in the membership can then attempt to rejoin).
This weakened requirement is called “clique avoidance” [2].

Note that it is quite simple to achieve consistent membership on top of an inter-
actively consistent message service: each node broadcasts its own membership list to
every other node, and each node runs a deterministic resolution algorithm on the (iden-
tical, by interactive consistency) lists received. Conversely, a membership and clique-
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avoidance service can assist the construction of an interactively consistent message ser-
vice: simply exclude from the membership any node that receives a message different
than the majority (TTA does this).

5 Practical Implementations

Here, we provide sketches of four bus architectures that provide concrete solutions to
the requirements and design challenges outlined in the previous sections. More details
are available in a companion report to this paper [17]. All four buses support the time-
triggered model of computation, employ fault-tolerant distributed clock synchroniza-
tion, and use bus guardians or some equivalent mechanism to protect against babbling
idiot failure modes. They differ in their fault hypotheses, mechanisms employed, ser-
vices provided, and in their assurance, performance, and cost.

SAFEbus. Honeywell developed SAFEbusTM (the principal designers are Kevin
Driscoll and Ken Hoyme [7]) to serve as the core of the Boeing 777 Airplane Infor-
mation Management System (AIMS) [22], which supports several critical functions,
such as cockpit displays and airplane data gateways. The bus has been standardized as
ARINC 659 [1] and variations on Honeywell’s implementation are being used or con-
sidered for other avionics and space applications. It uses a bus interconnect similar to
that shown in Figure 1; the interfaces (they are called Bus Interface Units, or BIUs)
are duplicated, and the interconnect bus is quad-redundant. Most of the functionality of
SAFEbus is implemented in the BIUs, which perform clock synchronization and mes-
sage scheduling and transmission functions. Each BIU of a pair is a separate FCU and
acts as its partner’s bus guardian by controlling its access to the interconnect.

Each BIU of a pair drives a different pair of interconnect buses but is able to read
all four; the interconnect buses themselves each comprise two data lines and one clock
line and operate at 30MHz. The bus lines and their drivers have the electrical char-
acteristics of OR-gates (i.e., if several different BIUs drive the same line at the same
time, the resulting signal is the OR of the separate inputs). Some of the protocols ex-
ploit this property; in particular, clock synchronization is achieved using an event-based
algorithm.

The paired BIUs at sender and receiver, and the quad-redundant buses, provide
sufficient redundancy for SAFEbus to provide interactively consistent message broad-
casts (in the Honeywell implementation) using an approach similar to that described
by Davies and Wakerly [4] (this remarkably prescient paper anticipated many of the
issues and solutions in Byzantine fault tolerance by several years). It also supports
application-level fault tolerance (based on self-checking pairs) by providing automatic
rapid rollover from masters to shadows.

Its fault hypothesis includes arbitrary faults, faults in several nodes (but only one
per node), and a high rate of fault arrivals. It never gives up and has a well-defined
restart and recovery strategy from fault arrivals that exceed its fault hypothesis. It toler-
ates spatial proximity faults in the AIMS application by duplicating the entire system.
SAFEbus is certified for use in passenger aircraft and has extensive field experience in
the Boeing 777. The Honeywell implementation is supported by an in-house tool chain.
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SAFEbus is the most mature of the four buses considered, and makes the fewest
compromises. But because each of its major components is paired (and its bus requires
separate lines for clock and data), it is the most expensive of those available for com-
mercial use (typically, a few hundred dollars per node).

TTA. The Time Triggered Architecture (TTA) was developed by Hermann Kopetz
and colleagues at the Technical University of Vienna [8]. Commercial development of
the architecture is undertaken by TTTech and it is being deployed for safety-critical
applications in cars by Audi and Volkswagen, and for flight-critical functions in aircraft
and aircraft engines by Honeywell.

Current implementations of TTA use a bus interconnect similar to that shown in Fig-
ure 1. The interfaces (they are called controllers) implement the TTP/C protocol [24]
that is at the heart of TTA, providing clock synchronization, and message sequenc-
ing and transmission functions. The interconnect bus is duplicated and each controller
drives both of them through partially independent bus guardians. TTA uses an averaging
clock synchronization algorithm based on that of Lundelius and Lynch [25]. This algo-
rithm is implemented in the controllers, but requires too many resources to be replicated
in the bus guardians. The guardians, which have independent clocks, therefore rely on
their controllers for a “start of frame” signal. This compromises their independence
somewhat (they also share the power supply and some other resources with their con-
trollers), so forthcoming implementations of TTA use a star interconnect similar to that
shown in Figure 2. Here, the guardian functionality is implemented in the central hub
which is fully independent of the controllers: the hubs and controllers comprise separate
FCUs in this implementation. Hubs are duplicated for fault tolerance and located apart
to withstand spatial proximity faults. They also perform signal reshaping to reduce the
incidence of SOS faults.

TTA employs algorithms for group membership and clique avoidance [2]; these
enable its clock synchronization algorithm to tolerate multiple faults (by reconfigur-
ing to exclude faulty members) and combine with its use of checksums (which can be
considered as digital signatures) to provide a form of interactively consistent message
broadcasts. The membership service supports application-level fault tolerance based on
master-backup or compensation. Proposed extensions provide state machine replication
in a manner that is transparent to applications.

The fault hypothesis of TTA includes arbitrary faults, and faults in several nodes
(but only one per node), provided these arrive at least two rounds apart (this allows the
membership algorithm to exclude the faulty node). It never gives up and has a well-
defined restart and recovery strategy from fault arrivals that exceed this hypothesis.

The prototype implementations of TTA have been subjected to extensive testing and
fault injections, and deployed in experimental vehicles. Several of its algorithms have
been formally verified [13,14], and aircraft applications under development are planned
to lead to FAA certification. It is supported by an extensive tool suite that interfaces to
standard CAD environments (e.g., Matlab/Simulink and Beacon). Current implementa-
tions provide 25 Mbit/s data rates; research projects are designing implementations for
gigabit rates. TTA controllers and the star hub (which is basically a modified controller)
are quite simple and cheap to produce in volume.
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Of the architectures considered here, TTA is unique in being used for both auto-
mobile applications, where volume manufacture leads to very low prices, and aircraft,
where a mature tradition of design and certification for flight-critical electronics pro-
vides strong scrutiny of arguments for safety.

SPIDER. A Scalable Processor-Independent Design for Electromagnetic Resilience
(SPIDER) is being developed by Paul Miner and colleagues at the NASA Langley Re-
search Center as a research platform to explore recovery strategies for radiation-induced
(HIRF/EMI) faults, and to serve as a case study to exercise the recent design assurance
guidelines for airborne electronic hardware (DO-254) [15].

SPIDER uses a star configuration similar to that shown in Figure 2, in which the
interfaces (called BIUs) may be located either with their hosts or in the centralized hub,
which also contains active elements called Redundancy Management Units, or RMUs.

Clock synchronization and other services of SPIDER are achieved by novel dis-
tributed algorithms executed among the BIUs and RMUs [11]. The services provided
include interactively consistent message broadcasts, and identification of failed nodes
(from which a membership service can easily be synthesized). SPIDER’s fault hypoth-
esis uses a hybrid fault model, which includes arbitrary faults, and allows some com-
binations of multiple faults. Its algorithms are novel and highly efficient and are being
formally verified.

SPIDER is an interesting design that uses a different topology and a different class
of algorithms from the other buses considered here. However, it is a research project
whose design and implementation are still in progress and so it cannot be compared
directly with the commercial products.

FlexRay. A consortium including BMW, DaimlerChrysler, Motorola, and Philips, is
developing FlexRay for powertrain and chassis control in cars. It differs from the other
buses considered here in that its operation is divided between time-triggered and event-
triggered activities. Published descriptions of the FlexRay protocols and implementa-
tion are sketchy at present [3] (see also the Web site www.flexray-group.com).

FlexRay can use either an “active” star interconnect similar to that shown in Figure
2, or a “passive” bus similar to that shown in Figure 1. In both cases, duplication of the
interconnect is optional. The star configuration of FlexRay (and also that of TTA) can
also be deployed in distributed configurations where subsystems are connected by hub-
to-hub links. Each FlexRay interface (it is called a communication controller) drives
the lines to its interconnects through separate bus guardians located with the interface.
(This means that with two buses, each node has three clocks: one for the controller and
one for each of the two guardians; this differs from the bus configuration of TTA where
there is one clock for the controller and both guardians share a second clock.) Like the
bus configuration of TTA, the guardians of FlexRay are not fully independent of their
controllers.

FlexRay aims to be more flexible than the other buses considered here, and this
seems to be reflected in the choice of its name. As noted, one manifestation of this
flexibility is its combination of time- and event-triggered operation. FlexRay partitions
each time cycle into a “static” time-triggered portion, and a “dynamic” event-triggered
portion. The division between the two portions is set at design time and loaded into
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the controllers and bus guardians. Communication during the event-driven portion of
the cycle uses the Byteflight protocol. Unlike SAFEbus and TTA, FlexRay does not
install the full schedule for the time-triggered portion in each controller. Instead, this
portion of the cycle is divided into a number of slots of fixed size and each controller
and its bus guardians are informed only of those slots allocated to their transmissions
(nodes requiring greater bandwidth are assigned more slots than those that require less).
Controllers learn the full schedule only when the bus starts up. Each node includes
its identity in the messages that it sends; during startup, nodes use these identifiers to
label their input buffers as the schedule reveals itself (e.g., if the messages that arrive
in slots 1 and 7 carry identifier 3, then all nodes will thereafter deliver the contents
of buffers 1 and 7 to the task that deals with input from node 3). There appears to be a
vulnerability here: a faulty node could masquerade as another (i.e., send a message with
the wrong identifier) during startup and thereby violate partitioning for the remainder
of the mission. It is not clear how this fault mode is countered.

Like TTA, FlexRay uses the Lundelius-Welch clock synchronization algorithm but,
unlike TTA, it does not use a membership algorithm to exclude faulty nodes. FlexRay
provides no services to its applications beyond best-efforts message delivery; in par-
ticular, it does not provide interactively consistent message broadcasts. This means that
all mechanisms for fault-tolerant applications must be provided by the applications pro-
grams themselves. Published descriptions of FlexRay do not specify its fault hypothesis,
and it appears to have no mechanisms to counter certain fault modes (e.g., SOS faults or
other sources of asymmetric broadcasts, and masquerading on startup). A never-give-up
strategy has not been described, nor have systematic or formal approaches to assurance
and certification.

FlexRay is interesting because of its mixture of time- and event-triggered operation,
and potentially important because of the industrial clout of its developers. Currently, it
is the slowest of the commercial buses, with a claimed data rate of no more than 10
Mbit/s.

6 Summary and Conclusion

A safety-critical bus architecture provides certain properties and services that assist in
construction of safety-critical systems. As with any system framework or middleware
package, these buses offer a tradeoff to system developers: they provide a coherent
collection of services, with strong properties and highly assured implementations, but
developers must sacrifice some design freedom to gain the full benefit of these services.
For example, all these buses use a time-triggered model of computation, and system
developers must build their applications within that framework. In return, the buses are
able to guarantee strong partitioning: faults in individual components or applications
(“functions” in avionics terms) cannot propagate to others, nor can they bring down the
entire bus (within the constraints of its fault hypothesis).

Partitioning is the minimum requirement, however. It ensures that one failed func-
tion will not drag down others, but in many safety-critical systems the failure of even
a single function can be catastrophic, so the individual functions must themselves be
made fault tolerant. Accordingly, most of the buses provide mechanisms to assist the
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development of fault-tolerant applications. The key requirement here is interactively
consistent message transfer: this ensures that all masters and shadows (or masters and
monitors), or all members of a voting pool, maintain consistent state. Three of the buses
considered here provide this basic service; some of them do so in association with other
services, such master/shadow rollover or group membership, that can be provided with
much increased efficiency and much reduced latency when implemented at a low level.
FlexRay, alone, provides none of these services. In their absence, all mechanisms for
fault-tolerance must be implemented in applications programs. Thus, application pro-
grammers, who may have little experience in the subtleties of fault-tolerant systems, be-
come responsible for the design, implementation, and assurance of very delicate mech-
anisms with no support from the underlying bus architecture. Not only does this in-
crease the cost and difficulty of making sure that things are done right, it also increases
their computational cost and latency. For example, in the absence of an interactively
consistent message service provided by the architecture, applications programs must
explicitly transmit the multiple rounds of cross-comparisons that are needed to imple-
ment this service at a higher level, thereby substantially increasing the message load.
Such a cost will invite inexperienced developers to seek less expensive ways to achieve
fault tolerance—in probable ignorance of the impossibility results in the theoretical
literature, and the history of intractable “Heisenbugs” (rare, unrepeatable, failures) en-
countered by practitioners who pushed for

��� ���
with inadequate foundations.

It is unlikely that any single bus architecture will satisfy all needs and markets, so
it is possible that FlexRay’s lack of application-level fault-tolerant services will find
favor in some areas. It is also to be expected that new or modified architectures will
emerge to satisfy new markets and requirements. (For example, it is proposed that TTA
could match FlexRay’s ability to support event-triggered as well as time-triggered com-
munications by allocating certain time slots to a simulation of CAN; the simulation is
actually faster than a real CAN bus, while retaining all the safety attributes of TTA.) I
hope that the description provided here will help potential users to evaluate existing ar-
chitectures against their own needs, and that it will help designers of new architectures
to learn from and build on the design choices made by their predecessors.
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Mapping
Function M:

Idle

Schedule  S0:

Occupied by  Other Schedules

Systen Schedule S:

‘‘Occupied by  S0
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Abstract. We investigate the combination of propositional SAT checkers with
domain-specific theorem provers as a foundation for bounded model checking
over infinite domains. Given a program � over an infinite state type, a linear
temporal logic formula � with domain-specific constraints over program states,
and an upper bound � , our procedure determines if there is a falsifying path of
length � to the hypothesis that � satisfies the specification � . This problem can
be reduced to the satisfiability of Boolean constraint formulas. Our verification
engine for these kinds of formulas is lazy in that propositional abstractions of
Boolean constraint formulas are incrementally refined by generating lemmas on
demand from an automated analysis of spurious counterexamples using theorem
proving. We exemplify bounded model checking for timed automata and for RTL
level descriptions, and investigate the lazy integration of SAT solving and theo-
rem proving.

1 Introduction

Model checking decides the problem of whether a system satisfies a temporal logic
property by exploring the underlying state space. It applies primarily to finite-state sys-
tems but also to certain infinite-state systems, and the state space can be represented
in symbolic or explicit form. Symbolic model checking has traditionally employed a
boolean representation of state sets using binary decision diagrams (BDD) [4] as a way
of checking temporal properties, whereas explicit-state model checkers enumerate the
set of reachable states of the system.

Recently, the use of Boolean satisfiability (SAT) solvers for linear-time temporal
logic (LTL) properties has been explored through a technique known as bounded model
checking (BMC) [7]. As with symbolic model checking, the state is encoded in terms
�

This research was supported by SRI International internal research and development, the
DARPA NEST program through Contract F33615-01-C-1908 with AFRL, and the National
Science Foundation under grants CCR-00-86096 and CCR-0082560.�	�
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of booleans. The program is unrolled a bounded number of steps for some bound � ,
and an LTL property is checked for counterexamples over computations of length � .
For example, to check whether a program with initial state � and next-state relation �
violates the invariant ����� in the first � steps, one checks, using a SAT solver:

���
	���
�������	�����	���
������
	�����	���
���������� ���
	�!�"#����	�!�
��$��%&�����'��	���
�(�������()%&�����'�
	�!*
+
��

This formula is satisfiable if and only if there exists a path of length at most � from the
initial state 	 � which violates the invariant ����� . For finite state systems, BMC can be
seen as a complete procedure since the size of counterexamples is essentially bounded
by the diameter of the system [3]. It has been demonstrated that BMC can be more
effective in falsifying hypotheses than traditional model checking [7, 8].

It is possible to extend the range of BMC to infinite-state systems by encoding
the search for a counterexample as a satisfiability problem for the logic of Boolean
constraint formulas. For example, the BMC problem for timed automata can be cap-
tured in terms of a Boolean formula with linear arithmetic constraints. But the method
presented here scales well beyond such simple arithmetic clauses, since the main re-
quirement on any given constraint theory is the decidability of the satisfiability problem
on conjunctions of atomic constraints. Possible constraint theories include, for exam-
ple, linear arithmetic, bitvectors, arrays, regular expressions, equalities over terms with
uninterpreted function symbols, and combinations thereof [20, 24].

Whereas BMC over finite-state systems deals with finding satisfying Boolean as-
signments, its generalization to infinite-state systems is concerned with satisfiability of
Boolean constraint formulas. In initial experiments with PVS [21] strategies, based on
a combination of BDDs for propositional reasoning and a variant of loop residue [27]
for arithmetic, we were usually only able to construct counterexamples of small depths
( ,.- ). Clearly, more specialized verification techniques are needed. Since BMC prob-
lems are often propositionally intensive, it seems to be more effective to augment SAT
solvers with theorem proving capabilities, such as ICS [10], than add propositional
search capabilities to theorem provers.

Here, we look at the specific combination of SAT solvers with decision procedures,
and we propose a method that we call lemmas on demand, which invokes the theorem
prover lazily in order to efficiently prune out spurious counterexamples, namely, coun-
terexamples that are generated by the SAT solver but discarded by the theorem prover
by interpreting the propositional atoms. For example, the SAT solver might yield the
satisfying assignment / , %10 , where the propositional variable / represents the atom24365 , and 0 represents 71� 2 
 3 71� 5 
 . A decision procedure can easily detect the in-
consistency in this assignment. More importantly, it can be used to generate a set of
conflicting assignments that can be used to construct a lemma that further constrains
the search. In the above example, the lemma %'/8(�0 can be added as a new clause in the
input to the SAT solver. This process of refining Boolean formulas is similar in spirit
to the refinement of abstractions based on the analysis of spurious counterexamples or
failed proof attempts [26, 25, 6, 16, 9, 14, 17].

From a set of inconsistent constraints in a spurious counterexample we obtain an
explanation as an overapproximation of the minimal, inconsistent subset of these con-
straints. The smaller the explanation that is generated from a spurious counterexample,
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the greater the pruning in the subsequent search. In this way, the computation of expla-
nations accelerates the convergence of our procedure.

Altogether, we present a method for bounded model checking over infinite-state
systems that consists of:

– A reduction to the satisfiability problem for Boolean constraint formulas.
– A lazy combination of SAT solving and theorem proving.
– An efficient method for constructing small explanations.

In general, BMC over infinite-state systems is not complete, but we obtain a complete-
ness result for BMC problems with invariant properties. The main condition on con-
straints is that the satisfiability of the conjunction of constraints is decidable. Thus, our
BMC procedure can be applied to infinite-state systems even when the (more) general
model-checking problem is undecidable.

The paper is structured as follows. In Section 2 we provide some background mate-
rial on Boolean constraints. Section 3 lays the foundation of a refinement-based satis-
fiability procedure for Boolean constraint logic. Next, Section 4 presents the details of
BMC over domain-specific constraints, and Section 5 discusses some simple examples
for BMC over clock constraints and the theory of bitvectors. In Section 6 we exper-
imentally investigate various design choices in lazy integrations of SAT solvers with
theorem proving. Finally, in Sections 7 and 8 we compare with related work and we
draw conclusions.

2 Background

A set of variables ��� 3���2 ����������� 2���� is said to be typed if there are nonempty sets 	 �
through 	 � and a type assignment 
 such that 
 � 2�� 
 3 	 � . For a set of typed variables
� , a variable assignment is a function 
 from variables 2�� � to an element of 
 � 2 
 .

Let � be a set of typed variables and � be an associated logical language. A set of
constraints in � is called a constraint theory � if it includes constants ������� , ������� � and if
it is closed under negation; a subset of � of constraints with free variables in �"!�#$� is
denoted by � �%� ! 
 . For & � � and 
 an assignment for the free variables in & , the value
of the predicate ' ' &)( (+* is called the interpretation of & w.r.t. 
 . Hereby, ' ',������� ( (%* ( ' ' ������� �-( (+* )
is assumed to hold for all (for no) 
 , and ' ' %.&�( (%* holds iff ' ' &)( (/* does not hold. A set of
constraints 01#2� is said to be satisfiable if there exists a variable assignment 
 such
that ' ' &)( (/* holds for every & in 0 ; otherwise, 0 is said to be unsatisfiable. Furthermore, a
function � -sat ��0 
 is called a � -satisfiability solver if it returns 3 if the set of constraints
0 is unsatisfiable and a satisfying assignment for 0 otherwise.

For a given theory � , the set of boolean constraints 4�565�7 �/� 
 includes all constraints
in � and it is closed under conjunction � , disjunction ( , and negation % � The no-
tions of satisfiability, inconsistency, satisfying assignment, and satisfiability solver are
homomorphically lifted to the set of boolean constraints in the usual way. If � 3
� / � ����������/ � � and the corresponding type assignment 
 � / � 
 is either true or false, then
4�585�7 � � �%�����*�%������� � �:9 ��
 reduces to the usual notion of Boolean logic with proposi-
tional variables � / � ��������� / � � . We call a Boolean satisfiability solver also a SAT solver.;

-ary disjunctions of constraints are also referred to as clauses, and a formula < �
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4�585�7 �+� �%��
+
 is in conjunctive normal form (CNF) if it is an � -ary conjunction of clauses.
There is a linear-time satisfiability-preserving transformation into CNF [22].

3 Lazy Theorem Proving

Satisfiability solvers for propositional constraint formulas can be obtained from the
combination of a propositional SAT solver with decision procedures simply by convert-
ing the problem into disjunctive normal form, but the result is prohibitively expensive.
Here, we lay out the foundation of a lazy combination of SAT solvers with constraint
solvers based on an incremental refinement of Boolean formulas. We restrict our anal-
ysis to formulas in CNF, since most modern SAT solvers expect their input to be in this
format.

Translation schemes between propositional formulas and Boolean constraint for-
mulas are needed. Given a formula < such a correspondence is easily obtained by
abstracting constraints in < with (fresh) propositional variables. More formally, for
a formula < � 4�565�7 �+� 
 with atoms 0 3 � & � ��������� & � �2� � and a set of proposi-
tional variables

� 3 � / � ��������� / � � not occurring in < , the mapping � from Boolean
formulas over � & � ��������� & � � to Boolean formulas over

�
is defined as the homomor-

phism induced by � � & � 
 3 / � . The inverse � of such an abstraction mapping � simply
replaces propositional variables / � with their associated constraints & � . For example,
the formula <�� 71� 2 
��3 2 �)71��71� 2 
+
 3 2 over equalities of terms with uninter-
preted function symbols determines the function � with, say, � ��71� 2 
��3 2 
 3 / �
and � ��71��71� 2 
 
 3 2 
 3 /'� ; thus � � <&
 3 / � �8/'� . Moreover, a Boolean assignment

 � ��	 � �%����������� ��� � � induces a set of constraints

�&�%
�

� � & � ����
�� � if 
#� / � 
 3 ������� then & 3 �1� / � 
 else & 3 %��&� / � 
 � .

Now, given a Boolean variable assignment 
 such that 
 � / ��
 3 ��� � ��� and 
#� /���
 3 �%����� ,�1��
�
 is the set of constraints � 71� 2 
 3 2 ��71�
71� 2 
+
 3 2 � . A consistent set of constraints
0 determines a set of assignments. For choosing an arbitrary, but fixed assignment from
this set, we assume as given a function ������� �����%0 
 .
Theorem 1. Let < � 4�565 7 �/�#
 be a formula in CNF, � be the literals in � � <&
 , and
���%<1
 � 3 � � #������1�%� 
 is � -inconsistent � be the set of � -inconsistencies for < ; then: <
is � -satisfiable iff the following Boolean formula is satisfiable:

� � <&
��$� ����! #"%$%$%$ " �'&)(+*),�-/.10 ��%32 � (�������()%32 � 
+
��
Thus, every 4�585�7 �+� 
 formula can be transformed into an equisatisfiable Boolean for-
mula as long as the consistency problem for sets of constraints in � is decidable.
This transformation enables one to use off-the-shelf satisfiability checkers to determine
the satisfiability of Boolean constraint formulas. On the other hand, the set of liter-
als is exponential in the number of variables and, therefore, an exponential number of
� -inconsistency checks is required in the worst case. It has been observed, however, that
in many cases only small fragments of the set of � -inconsistencies are needed.
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������� ���	�
 ��
�� �����
loop� 
 ��� - ����� ��	 ���

if

� ��� then return � �
if � - ����� ����� � � �"!�#� then return $&%�'('���) ����� � � ���* 
 � +,�-/.�021�3�4 
��65 ��� 	�
 �7	98 *

endloop

Fig. 1. Lazy theorem proving for :<;=;?> � �<� .
Starting with / 3 � �%<1
 , the procedure @BADC��%<1
 in Figure 1 realizes a guided enu-

meration of the set of � -inconsistencies. In each loop, the SAT solver E - � � � suggests
a candidate assignment 
 for the Boolean formula / , and the satisfiability solver � - � � �
for � checks whether the corresponding set of constraints �&�%
�
 is consistent. Whenever
this consistency check fails, / is refined by adding a Boolean analogue � of this in-
consistency, and E - ����� is applied to suggest a new candidate assignment for the refined
formula / � � . This procedure terminates, since, in every loop, � is not subsumed by / ,
and there are only a finite number of such strengthenings.

Corollary 1. @BADC��%<&
 in Figure 1 is a satisfiability solver for 4�565 7 �/� 
 formulas in CNF.

We list some essential optimizations. If the variable assignments returned by the SAT
solver are partial in that they include don’t care values, then the number of argument
constraints to � - � � � can usually be reduced considerably. The use of don’t care values
also speeds up convergence, since more general lemmas are generated. Now, assume a
function ��FHG � �=I � �%0 
 , which, for an inconsistent set of constraints 0 , returns a minimal
number of inconsistent constraints in 0 or a “good” overapproximation thereof. The
use of ��FHG � �JI �1��0 
 instead of the stronger 0 obviously accelerates the procedure. We
experimentally analyze these efficiency issues in Section 6.

4 Infinite-State BMC

Given a BMC problem for an infinite-state program, an LTL formula with constraints,
and a bound on the length of counterexamples to be searched for, we describe a sound
reduction to the satisfiability problem of Boolean constraint formulas and we show
completeness for invariant properties. The encoding of transition relations follows the
now-standard approach already taken in [13]. Whereas in [7] LTL formulas are trans-
lated directly into propositional formulas, we use Büchi automata for this encoding.
This simplifies substantially the notations and the proofs, but a direct translation can
sometimes be more succinct in the number of variables needed. We use the common

50



6

�
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���<
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 �����������

Fig. 2. The simple example.

notions for finite automata over finite and infinite words, and we assume as given a
constraint theory � with a satisfiability solver.

Typed variables in � � 3 ��2 ����������� 2 � � are also called state variables, and a program
state is a variable assignment over � . A pair ����� ��� is a � -program over � if � �
4�585�7 �+� �%��
+
 and � � 4�565 7 �+� �%� 9 � ! 
+
 , where � ! is a primed, disjoint copy of � . � is
used to restrict the set of initial program states, and � specifies the transition relation
between states and their successor states. The set of � -programs over � is denoted by����� �/� �%��
 
 . The semantics of a program

�
is given in terms of a transition system �

in the usual way, and, by a slight abuse of notation, we sometimes write � for both
the program and its associated transition system. The system depicted in Figure 2, for
example, is expressed in terms of the program � ���+��� over ��2 ��2 � , where the counter 2 is
interpreted over the integers and the variable 2 for encoding locations is interpreted over
the Booleans (the � -ary connective � holds iff exactly one of its arguments holds).

�'� 2 � 2�
 � 3 2� "! � 2
��� 2 � 2+� 2 ! � 2 ! 
 � 3 � 21� 2 ! 3 2
#�$ � %32 ! 
��

�
%32 � 2� %! � 2 ! 3�2'&�$(&*) � %32 ! 
����
%32 � 2 ! 3�2 � 2 ! 

Initially, the program is in location 2 and 2 is greater than or equal to ! , and the tran-
sitions in Figure 2 are encoded by a conjunction of constraints over the current state
variables 2 ��2 and the next state variables 2 !�� 2%! .

The formulas of the constraint linear temporal logic +-,.+ �/� 
 (in negation normal
form) are linear-time temporal logic formulas with the usual “next”, “until”, and “re-
lease” operators, and constraints & � � as atoms.

< � � 3 �%����� � ��� ��� � � & �-< � � < � � < � ( < � �0/ < � < �21 < � �-< �43 < �
The formula / < holds on some path 5 iff < holds in the second state of 5 . < �41 < �
holds on 5 if there is a state on the path where < � holds, and at every preceding state
on the path < � holds. The release operator R is the logical dual of U. It requires that < �
holds along the path up to and including the first state, where < � holds. However, < �
is not required to hold eventually. The derived operators 6 < 3 true 1 < and 72< 3
false 3 < denote “eventually < ” and “globally < ”. Given a program � � �8�9� �+� 
 and
a path 5 in � , the satisfiability relation � �:5 � 3 < for an +;,�+��+� 
 formula < is given
in the usual way with the notable exception of the case of constraint formulas & . In this
case, � �<5 � 3 & if and only if & holds in the start state of 5 . Assuming the notation
above, the � -model checking problem � � 3 < holds iff for all paths 5 3 	 � ��	 � ������� in
� with 	 � � � it is the case that � �:5 � 3 < . Given a bound � , a program � � �8��� �/� 

and a formula < � +-,.+��/� 
 we now consider the problem of constructing a formula
' ' � � < ( ( ! � 4�565 7 �+� 
 , which is satisfiable if and only if there is a counterexample of
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length � for the � -model checking problem � � 3 < . This construction proceeds as
follows.

1. Definition of ' ' �2( ( ! as the unfolding of the program � up to step � from initial
states (this requires � disjoint copies of � ).

2. Translation of %.< into a corresponding Büchi automaton E�� . whose language of
accepting words consists of the satisfying paths of %.< .

3. Encoding of the transition system for E�� . and the Büchi acceptance condition as a
Boolean formula, say ' ' E ( ( ! .

4. Forming the conjunction ' ' � � < ( ( ! � 3 ' ' E ( ( ! � ' ' �2( ( ! .
5. A satisfying assignment for the formula ' ' � � < ( ( ! induces a counterexample of

length � for the model checking problem � � 3 < .

Definition 1 (Encoding of � -Programs). The encoding ' ' �2( ( ! of the � th unfolding of
a � -program � 3 � ���+��� in

�8��� �/�&� ��2 � ��������� 2 � � 
 
 is given by the 4�565 7 �/� 
 formula
' ' �2( ( ! .

� � � 2 ' ! ( 
 � 3 � � ��2 ���	 2 � ' ! (�� 2 � � � � �
����� 2 ' � ( � 2 ' � # ) ( 
 � 3 � � ��2 ���	 2 � ' � ( � 2 � � � �:9 ��2 !� �	 2 � ' � # ) (�� 2 � � � � �

' ' �2( ( ! � 3 � � � 2 ' ! ( 
��
!�"#�
�
�
	 �
����� 2 ' � (
� 2 ' � # ) ( 


where ��2 � ' � ( � ! ,��., � � is a family of typed variables for encoding the state of
variable 2�� in the � th step, 2 ' � ( is used as an abbreviation for 2 � ' ��( ��������� 2�� ' � ( , and
� � 2 � �	 2�� ' ��( � denotes simultaneous substitution of 2�� by 2�� ' � ( in formula � .

A two-step unfolding of the simple program in Figure 2 is encoded by ' ' 	�� $ / 2�
-( ( � � 3
��� � � � � � � ( � ).

��� � 3 2 ' ! (  "! � 2 ' ! (
� � � 3 �)2 ' ! ( � � 2 ' ) ( 3 2 ' ! ( #�$ 
 � %32 ' ) (�
 �

��%32 ' ! ( � � 2 ' ! (  *! 
�� � 2 ' ) ( 3 2 ' ! ( & $(&") 
 � %32 ' ) (�
 �
��%32 ' ! ( � � 2 ' ) ( 3 2 ' ! ( 
�� 2 ' ) (�


� � � 3 �)2 ' ) ( � � 2 ' � ( 3 2 ' ) ( #�$ 
 � %32 ' � (�
 �
��%32 ' ) ( � � 2 ' ) (  *! 
�� � 2 ' � ( 3 2 ' ) ( & $(&") 
 � %32 ' � (�
 �
��%32 ' ) ( � � 2 ' � ( 3 2 ' ) ( 
�� 2 ' � (�


The translation of linear temporal logic formulas into a corresponding Büchi au-
tomaton is well-studied in the literature [11] and does not require additional explana-
tion. Notice, however, that the translation of +-,.+ �/� 
 formulas yields Büchi automata
with � -constraints as labels. Both the resulting transition system and the bounded ac-
ceptance test based on the detection of reachable cycles with at least one final state can
easily be encoded as 4�565 7 �+� 
 formulas.

52



8

2 � 2 �2��"!
2� %!

Fig. 3. Automaton for 6 � 2��%! 
 .
Definition 2 (Encoding of Büchi Automata). Let � 3 ��2 � ��������� 2 ��� be a set of typed
variables, E 3 ��� ���)��� ��� � �	� � be a Büchi automaton with labels � in 4�565 7 �+� 
 , andG�& be a variable (not in � ), which is interpreted over the finite set of locations � of
the Büchi automaton. For a given integer � , we obtain, as in Definition 1, families of
variables 2 � ' � ( , / &�' � ( ( ) , � , � , ! , � , � ) for representing the � th state of E in
a run of length � . Furthermore, the transition relation of E is encoded in terms of the
� -program E�
 over the set of variables � G�& � 9 � , and ' ' E�
 ( ( ! denotes the encoding of
this program as in Definition 1. Now, given an encoding of the acceptance condition

� ����� E 
 ! � 3
!�"#�+
�
	 �


 G�& ' �8( 3 G�& ' � (��
�
�� 	 � 2 � ' �8( 3�2 � ' � (��


 !+� 	 �	� � +� *�� G�&�' 2+( 3 7����
the � -th unfolding of E is defined by ' ' E ( ( ! � 3 ' ' E�
 ( ( ! � � &�&*� E 
 ! .

An +-,.+��/� 
 formula is said to be R-free (U-free) iff there is an equivalent formula
(in negation normal form) not containing the operator R (U). Note that U-free formulas
correspond to the notion of syntactic safety formulas [28, 15]. Now, it can be directly
observed from the semantics of +;,�+ �+� 
 formulas that every R-free formula can be
translated into an automaton over finite words that accepts a prefix of all infinite paths
satisfying the given formula.

Definition 3. Given an automaton E over finite words and the notation as in Defini-
tion 2, the encoding of the � -ary unfolding of E is given by ' ' E�
 ( ( ! � � &�& � E 
 ! with the
acceptance condition

� &�&�� E 
 ! � 3
!+
�
	 �

+� *�� G�& ' � ( 3 7 .

Consider the problem of finding a counterexample of length � 3 � to the hypothesis that
our running example in Figure 2 satisfies 7 � 2� ! 
 . The negated property 6 � 2�� ! 

is an R-free formula, and the corresponding automaton E over finite words is displayed
in Figure 3 ( 2 � is an accepting state.). This automaton is translated, according to Defini-
tion 3, into the formula

' ' E:( ( � � 3 �'� E 
���� � � E 
���� � � E 
�� � & &*� E 
 � . � � �*

The variables G�& ' � ( and 2 ' � ( (� 3 ! � ) � � ) are used to represent the first three states in a
run.

��� E 
 � 3 G�&�' ! ( 3 2 �
� � � E 
 � 3 �6G�& ' ! ( 3 2 � � 2 ' ! (  "! � G�& ' ) ( 3 2 � 
�� ��G�& ' ! ( 3 2 � � 2 ' ! ( �%! � G�&�' ) ( 3 2 � 

� � � E 
 � 3 �6G�& ' ) ( 3 2 � � 2 ' ) (  "! � G�& ' � ( 3 2 � 
�� ��G�& ' ) ( 3 2 � � 2 ' ) ( �%! � G�&�' � ( 3 2 � 


� &�&�� E 
 � � 3 G�&�' ! ( 3 2 � ( G�&�' ) ( 3 2 � ( G�&�' � ( 3 2 �
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The bounded model checking problem ' ' 	�� $ / 2�
-( ( � � ' ' E:( ( � for the simple program is
obtained by conjoining the formulas � � 
 and � � � 
 . Altogether, we obtain the coun-
terexample � ! ��2�
 	 � $ � %32�
 	 � &�) ��2�
 of length � for the property 7 � 2� %! 
 .
Theorem 2 (Soundness). Let � � �8�9� �+� 
 and < � +-,.+��+� 
 . If there exists a natural
number � such that ' ' � � < ( ( ! is satisfiable, then � � 3 � < .
Proof sketch. If ' ' � � < ( ( ! is satisfiable, then so are ' ' E ( ( ! and ' ' �2( ( ! . From the satisfia-
bility of ' ' E:( ( ! it follows that there exists a path in the Büchi automaton E that accepts
the negation of the formula < .

In general, BMC over infinite-state systems is not complete. Consider, for example,
the model checking problem � � 3 < for the program � 3 � ���+��� over the variable
� 3 ��2 � with � 3 � 2 3 ! 
 and � 3 � 2 ! 3 2 # ) 
 and the formula < 3 6 � 2��*! 
 . �
can be seen as a one-counter automaton, where initially the value of the counter 2 is ! ,
and in every transition the value of 2 is incremented by ) . Obviously, it is the case that
� �� 3 < , but there exists no � � � ; such that the formula ' ' � � < ( ( ! is satisfiable. Since
%.< is not an R-free formula, the encoding of the Büchi automaton E ! must contain,
by Definition 2, a finite accepting cycle, described by /�&�' �8( 3 /�&�' ! (�� 2 ' �6( 3 2 ' ! (
or /�& ' �8( 3 / &�' ) (�� 2 ' �8( 3 2 ' ) ( etc. Such a cycle, however, does not exist, since the
program � contains only one noncycling, infinite path, where the value of 2 increases
in every step, that is 2 ' � # ) ( 3�2 ' �%( # ) , forall �  "! .
Theorem 3 (Completeness for Finite States). Let � be a � -program with a finite set
of reachable states, < be an +-,.+��/� 
 formula < , and � be a given bound; then: � � 3

� < implies 
�� � � ; � ' ' � � < ( ( ! is satisfiable.
Proof sketch. If � � 3 � < , then there is a path in � that falsifies the formula. Since
the set of reachable states is finite, there is a finite � such that ' ' � � < ( (! is satisfiable by
construction.

For a U-free formula < , the negation %.< is R-free and can be encoded in terms of an
automaton over finite words. Therefore, by considering only U-free properties one gets
completeness also for programs with an infinite set of reachable states. A particularly
interesting class of U-free formulas are invariant properties.

Theorem 4 (Completeness for Syntactic Safety Formulas). Let � be a � -program,
< � +-,.+ �+� 
 be a U-free property, and � be some given integer bound. Then � � 3
� < implies 
�� � � ; � ' ' � � < ( ( ! is satisfiable.
Proof sketch. If � � 3 � < and < is U-free then there is a finite prefix of a path of �
that falsifies < . Thus, by construction of ' ' � � < ( ( ! , there is a finite � such that ' ' � � < ( ( !
is satisfiable.

This completeness result can easily be generalized to all safety properties [15] by ob-
serving that the prefixes violated by these properties can also be accepted by an automa-
ton on finite words.

5 Examples

We demonstrate BMC over clock constraints and the theory of bitvectors by means of
some simple but, we think, illustrative examples.
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Fig. 4. Timed automata example.

The timed automaton [1] in Figure 4 has two real-valued clocks 2 , 5 , the transi-
tions are decorated with clock constraints and clock resets, and the invariant 5 , ) in
location 2 � specifies that the system may stay in 2 � only as long as the value of 5 does
not exceed ) . The transitions can easily be described in terms of a program with linear
arithmetic constraints over states �6G�&�� 2 � 5 
 , where G�& is interpreted over the set of lo-
cations � 2 �*� 2 ����2 � � and the clock variables 2 , 5 are interpreted over � � �� . Here we show
only the encoding of the time � 
 2�
 5 steps.

� 
 2�
 5 �6G�& � 2 � 5 � G�& ! � 2 ! � 5 ! 
 � 3

��  *! ���+�6G�& 3 2 ��� 5 ! , ) 
�� � 2 ! 3 2 # � 
�� � 5 ! 3�5 # � 
�� �6G�& ! 3 G�&�
+
��

This relation can easily be transformed into an equivalent quantifier-free formula. Now,
assume the goal of falsifying the hypothesis that the timed automaton in Figure 4 satis-
fies the +-,.+��/�#
 property < 3 � 7 %32 � 
 , that is, the automaton never reaches location 2 � .
Using the BMC procedure over linear arithmetic constraints one finds the counterex-
ample

� 2 �*� 2$3 ! � 5 3 ! 
 	 � 2 ��� 2$3 ! � 5)3 ! 
 	 � 2 � � 2$3 ! � 5)3 ! 

of length � . By using Skolemization of the delay step � instead of quantifier elimination,
explicit constraints are synthesized for the corresponding delay steps in countertraces.

Now, we examine BMC over a theory E of bitvectors by encoding the shift register
example in [3] as follows.

����� � F � 
 � 3 �%����� ����� � F � ��� � 
 � 3 ��� � 3 F � ' ) � � &") (�� ) � 

The variables F � and � � are interpreted over bitvectors of length � , F � ' ) � � &") ( de-
notes extraction of bits ) through � & ) , � denotes concatenation, and ! � ( ) � ) is the
constant bitvector of length � with all bits set to zero (one). In the initial state the con-
tent of the register F � is arbitrary. Given the +;,�+�� E 
 property < 3 6 � F � 3 ! � 
 and
� 3 � the corresponding BMC problem reduces to showing satisfiability of the 4�565 7 � E 

formula

� 2 � 3 2 �8' ) � � &*) (�� ) ��
�� � 2 � 3 2 � ' ) � � &*) (�� ) ��
��
� 2 ���3 ! � ( 2 � �3 ! � ( 2 � �3 ! � 
 � � 2 � 3�2 � ( 2 � 3�2 ��
��

The variables 2 � , 2 � , 2 � are interpreted over bitvectors of size � , since they are used
to represent the first three states in a run of the shift register. The satisfiability of this

55



11


�� 
 � 
��
5 !� � 3�5 � # )

5 � 3 ! (5 � , 5 �

5 !� � 3 !

� � � � �
�

5 !� � 3 5 � # )
5 � 3 ! (
% � 5 � , 5 ��


5 !� � 3 !

Fig. 5. Bakery Mutual Exclusion Protocol.

formula is established by choosing all unit literals to be true. Using theory-specific can-
onization (rewrite) steps for the bitvector theory E [18], we obtain an equation between
variables 2 � and 2 � .
2 � 3 2 ��' ) �)� &*) (�� ) � 3 � 2 �8' ) � � &*) (�� ) ��
�' ) � � &*) (�� ) � 3 2 �6' � � � &") (�� ) �
This canonization step corresponds to a symbolic simulation of depth � of the syn-
chronous circuit. Now, in case the SAT solver decides the equation 2 � 3 2 � to be
true, the bitvector decision procedures are confronted with solving the equality 2 � 32 � ' � � � &") (�� ) � . The most general solution for 2 � is obtained using the solver in [18]
and, by simple backsubstitution, one gets a satisfying assignment for 2 � , 2 � , 2 � , which
serves as a counterexample for the assertion that the shift register eventually is zero.
The number of case splits is linear in the bound � , and, by leaving the word size unin-
terpreted, our procedure invalidates a family of shift registers without runtime penalties.

6 Efficiency Issues

The purpose of the experiments in this section is to identify useful concepts and tech-
niques for obtaining efficient implementations of the lazy theorem proving approach.
For these experiments we implemented several refinements of the basic lazy theorem
proving algorithm from Section 3, using SAT solvers such as Chaff [19] and ICS [10]
for deciding linear arithmetic constraints. These programs either returns 3 in case the
input Boolean constraint problem is unsatisfiable or an assignment for the variables.
We describe some of our experiments using the Bakery mutual exclusion protocol (see
Figure 5). Usually, the 5 � counters are initialized with ! , but here we simultaneously
consider a family of Bakery algorithms by relaxing the condition on initial values of the
counters to 5 �  %! � 5 �  "! . Our experiments represent worst-case scenarios in that the
corresponding BMC problems are all unsatisfiable. Thus, unsatisfiability of the BMC
formula for a given � corresponds to a verification of the mutual exclusion property for
paths of length , � .

Initial experiments with a direct implementation of the refinement algorithm in Fig-
ure 1 clearly show that this approach quickly becomes impractical. We identified two
main reasons for this inefficiency.

First, for the interleaving semantics of the Bakery processes, usually only a small
subset of assignments is needed for establishing satisfiability. This can already be demon-
strated using the ��I�� G � � example in Figure 2. Suppose a satisfying assignment 
 (coun-
terexample) corresponding to executing the transition 2 & 	 %32 with 2 ! 3 2 # $ in the
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first step; that is, ' ' 2 ' ! ( ( ( * , ' ' 2 ' ) ( 3�2 ' ! ( # $ ( (+* and ' ' %32 ' ) ( ( (+* hold. Clearly, the value of
the literals 2 ' ! (  ! , 2 ' ) ( 3 2 ' ! ( &�$ &%) , and 2 ' ) ( 3 2 ' ! ( are don’t cares, since they
are associated with some other transition. Overly eager assignment of truth values to
these constraints results in useless search. For example, if ' ' 2 ' ) ( 3�2 ' ! ( ( (%* holds, then an
inconsistency is detected, since $��"! , and 2 ' ) ( 3 2 ' ! ( #�$ 3 2 ' ! ( . Consequently, the
assignment 
 is discarded and the search continues. To remedy the situation we analyze
the structure of the formula before converting it to CNF, and use this information to
assign don’t care values to literals corresponding to unfired transitions in each step.

Second, the convergence of the refinement process must be accelerated by finding
concise overapproximations explain( 0 ) of the minimal set of inconsistent constraints
0 corresponding to a given Boolean assignment. There is an obvious trade-off between
the conciseness of this approximation and the cost for computing it. We are proposing
an algorithm for finding such an overapproximation based on rerunning the decision
procedures �)� $�� � 
 times, where $ is some given upper bound on the number of
iterations (see below) and � is the number of given constraints.

The run in Figure 6 illustrates this procedure. The constraints in Figure 6.(a) are as-
serted to ICS from left-to-right. Since ICS detects a conflict when asserting 5�� , ! , this
constraint is in the minimal inconsistent set. Now, an overapproximation of the minimal
inconsistent sets is produced by connecting constraints with common variables (Fig-
ure 6.(a)). This overapproximation is iteratively refined by collecting the constraints in
an array as illustrated in Figure 6.(b). Configurations consist of triples ��0 � 2+���'
 , where
0 is a set of constraints guaranteed to be in the minimal inconsistent set, and the inte-
gers 2 , � are the lower and upper bounds of constraint indices still under consideration.
The initial configuration in our example is � ��5 � , ! � � ! �
	�
 . In each refinement step,
we maintain the invariant that 0 9 � array ' ��( � 2 , � ,�� � is inconsistent. Given a
configuration �%0 ��2 ����
 , individual constraints of index between 2 and � are added to
0 until an inconsistency is detected. In the first iteration of our running example, we
process constraints from right-to-left, and an inconsistency is only detected when pro-
cessing 5�
�� ! . The new configuration � ��5�� , ! � 5�
�� ! � � ) ��	 
 is obtained by adding
this constraint to the set of constraints already known to be in a minimal inconsis-
tent set, by leaving � unchanged, and by setting 2 to the increment of the index of the
new constraint. The order in which constraints are asserted is inverted after each iter-
ation. Thus, in the next step in our example, we successively add constraints between) and 	 from left-to-right to the set ��5�� , ! � 5�
�� ! � . An inconsistency is first de-
tected when asserting 5 � 3 5 
 to this set, and the new configuration is obtained as
� ��5 � , ! � 5 
 ��! � 5 � 3 5 
 � � ) � ) 
 , since the lower bound 2 is now left unchanged and
the upper bound is set to the decrement of the index of the constraint for which the
inconsistency has been detected. The procedure terminates if 0 in the current config-
uration is inconsistent or after $ refinements. In our example, two refinement steps
yield the minimal inconsistent set ��5�
�� ! � 5���3 5�
 � 5�� , ! � . In general, the number
of assertions is linear in the number of constraints, and the algorithm returns the exact
minimal set if its cardinality is less than or equal to the upper bound $ of iterations.

Given these refinements to the satisfiability algorithm in Figure 1, we implemented
an offline integration of Chaff with ICS, in which the SAT solver and the decision pro-
cedures are treated as black boxes, and both procedures are restarted in each lazy refine-
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Fig. 6. Trace for linear time explain function.

ment step. Table 1 includes some statistics for three different configurations depending
on whether don’t care processing or the linear explain are enabled. For each configu-
ration, we list the total time (in seconds) and the number of conflicts detected by the
decision procedure. This table indicates that the effort of assigning don’t care values

don’t cares, no explain no don’t cares, explain don’t cares, explain
depth time conflicts time conflicts time conflicts



0.71 66 45.23 577 0.31 16
�

2.36 132 83.32 855 0.32 18
�

12.03 340 286.81 1405 1.75 58
�

56.65 710 627.90 1942 2.90 73
�

230.88 1297 1321.57 2566 8.00 105� � 985.12 2296 - - 15.28 185� 
 - - - - 511.12 646

Table 1. Offline lazy theorem proving (’-’ is time 	 � � � � secs).

depending on the asynchronous nature of the program and the use of explain functions
significantly improves performance.

Recall that the experiments so far represent worst-case scenarios in that the given
formulas are unsatisfiable. For BMC problems with counterexamples, however, our
procedure usually converges much faster. Consider, for example the mutual exclusion
problem of the Bakery protocol with a guard 5 �  5 � & ) instead of % � 5 � , 5 � 
 . The
corresponding counterexample for � 3 - is produced in a fraction of a second after
eight refinements.

� 
���� � ��� � ��������
 	 � 
 ��� ) # �*�*� � ��������
 	 � 
��*� ) # �*��� � ��������
 	
� 
�� � ) # ��� � � � � � # ����
 	 � 
���� ) # �*�*� � �*� � # �*��


This counterexample actually represents a family of traces, since it is parameterized
by the constants � � and ��� , with � �������  ! , which have been introduced by the ICS
decision procedures.

In the case of lazy theorem proving, the offline integration is particular expensive,
since restarts implies the reconstruction of ICS logical contexts repetitively. Memoiza-
tion of the decision procedure calls does not improve the situation significantly, since
the assignments produced by Chaff in subsequent calls usually do not have long enough
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no explain explain
depth time conflicts calls to ICS time conflicts calls to ICS

5 0.03 24 162 0.01 7 71
6 0.08 48 348 0.01 7 83
7 0.19 96 744 0.02 7 94
8 0.98 420 3426 0.05 29 461
9 2.78 936 7936 0.19 70 1205
10 8.60 2008 17567 0.26 85 1543
15 - - - 4.07 530 13468

Table 2. Online lazy theorem proving.

common prefixes. This observation, however, might not be generalizable, since it de-
pends on the specific, randomized heuristics of Chaff for choosing variable assignments.

In an online integration, choices for propositional variable assignments are syn-
chronized with extending the logical context of the decision procedures with the cor-
responding atoms. Detection of inconsistencies in the logical context of the decision
procedures triggers backtracking in the search for variable assignments. Furthermore,
detected inconsistencies are propagated to the propositional search engine by adding
the corresponding inconsistency clause (or, using an explanation function, a good over-
approximation of the minimally inconsistent set of atoms in the logical context). Since
state-of-the-art SAT solvers such as Chaff are missing the necessary API for realizing
such an online integration, we developed a homegrown SAT solver which has most of
the features of modern SAT solvers and integrated it with ICS. The results of using this
online integration for the Bakery example can be found in Table 2 for two different con-
figurations.1 For each configuration, we list the total time (in seconds), the number of
conflicts detected by ICS, and the total number of calls to ICS. Altogether, using an ex-
planation facility clearly pays off in that the number of refinement iterations (conflicts)
is reduced considerable.

7 Related Work

There has been much recent work in reducing the satisfiability problem of Boolean for-
mulas over the theory of equality with uninterpreted function symbols to a SAT prob-
lem [5, 12, 23] using eager encodings of possible instances of equality axioms. In con-
trast, lazy theorem proving introduces the semantics of the formula constraints on de-
mand by analyzing spurious counterexamples. Also, our procedure works uniformly for
much richer sets of constraint theories. It would be interesting experimentally to com-
pare the eager and the lazy approach, but benchmark suites (e.g. www.ece.cmu.edu/ � mvelev)
are currently only available as encodings of Boolean satisfiability problems.

In research that is most closely related to ours, Barrett, Dill, and Stump [2] de-
scribe an integration of Chaff with CVC by abstracting the Boolean constraint formula

1 The differences in the number of conflicts compared to Table 1 are due to the different heuris-
tics of the SAT solvers used.
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to a propositional approximation, then incrementally refining the approximation based
on diagnosing conflicts using theorem proving, and finally adding the appropriate con-
flict clause to the propositional approximation. This integration corresponds directly to
an online integration in the lazy theorem paradigm. Their approach to generate good
explanations is different from ours in that they extend CVC with a capability of ab-
stract proofs for overapproximating minimal sets of inconsistencies. Also, optimiza-
tions based on don’t cares are not considered in [2]. The experimental results in [2]
coincide with ours in that they suggest that lazy theorem proving without explanations
(there called the naive approach) and offline integration quickly become impractical.
Using equivalence checking for pipelined microprocessors, speedups of several orders
of magnitude over their earlier SVC system are obtained.

8 Conclusion

We developed a bounded model checking (BMC) procedure for infinite-state systems
and linear temporal logic formulas with constraints based on a reduction to the sat-
isfiability problem of Boolean constraint logic. This procedure is shown to be sound,
and although incomplete in general, we establish completeness for invariant formulas.
Since BMC problems are propositionally intensive, we propose a verification technique
based on a lazy combination of a SAT solver with a constraint solver, which introduces
only the portion of the semantics of constraints that is relevant for constructing a BMC
counterexample.

We identified a number of concepts necessary for obtaining efficient implementa-
tions of lazy theorem proving. The first one is specialized to BMC for asynchronous
systems in that we generate partial Boolean assignments based on the structure of pro-
gram for restricting the search space of the SAT solver. Second, good approximations of
minimal inconsistent sets of constraints at reasonable cost are essential. The proposed
any-time algorithm uses a mixture of structural dependencies between constraints and
a linear number of reruns of the decision procedure for refining overapproximations.
Third, offline integration and restarting the SAT solver results in repetitive work for the
decision procedures. Based on these observations we realized a lazy, online integration
in which the construction of partial assignments in the Boolean domain is synchro-
nized with the construction of a corresponding logical context for the constraint solver,
and inconsistencies detected by the constraint solver are immediately propagated to
the Boolean domain. First experimental results are very promising, and many standard
engineering can be applied to significantly improve running times.

We barely scratched the surface of possible applications. Given the rich set of possi-
ble constraints, including constraints over uninterpreted function symbols, for example,
our extended BMC methods seems to be suitable for model checking open systems,
where environments are only partially specified. Also, it remains to be seen if BMC
based on lazy theorem proving is a viable alternative to specialized model checking
algorithms such as the ones for timed automata and extensions thereof for finding bugs,
or even to AI planners dealing with resource constraints and domain-specific modeling.
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Abstract. We investigate the combination of propositional SAT checkers with constraint
solvers for domain-specific theories such as linear arithmetic, arrays, lists and the combination
thereof. Our procedure realizes a lazy approach to satisfiability checking of propositional
constraint formulas by iteratively refining Boolean formulas based on lemmas generated on
demand by constraint solvers.

1. Introduction

Many search and optimization problems can effectively be solved using propo-
sitional reasoning techniques. Finiteness, however, is an inherent restriction
of propositional encodings, and computational systems and environment mod-
els are usually expressed more succinctly in logics enriched with domain-
specific constraints. Planning problems in AI, for example, may involve solv-
ing numeric resource constraints, and program analyses often require reason-
ing about constraints in the combination of datatypes such as integers, arrays,
lists, or bitvectors.

Given a decidable constraint theory, we address the problem of construct-
ing effective solutions to the satisfiability problem for propositional combi-
nations of constraints. Of course, satisfiability solvers for propositional con-
straint formulas can easily be obtained from the combination of a proposi-
tional SAT solver with decision procedures simply by converting the prob-
lem into disjunctive normal form, but the resulting algorithm is usually pro-
hibitively expensive. Alternatively, propositional search capabilities can be
added to theorem provers, but it seems to be more effective to augment propo-
sitional SAT solvers with theorem proving capabilities.

Here we look at the specific combination of SAT solvers with constraint
solvers, and we propose a method that we call lemmas on demand, which
invokes the constraint solver lazily in order to efficiently prune out spurious
counterexamples, namely, counterexamples that are generated by the SAT
solver but discarded by the theorem prover by interpreting the propositional

�
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atoms. For example, the SAT solver might yield the satisfying assignment� , ��� , where the propositional variable � represents the atom ����� , and
� represents 	�
���
���	�
���
 . A decision procedure can easily detect the in-
consistency in this assignment. More importantly, it can be used to gener-
ate a set of conflicting assignments that can be used to construct a lemma
that further constrains the search. In the above example, the lemma � ��� �
can be added as a new clause in the input to the SAT solver. This process
of refining Boolean formulas is similar in spirit to the refinement of ab-
stractions based on the analysis of spurious counterexamples or failed proof
attempts [26, 25, 6, 16, 8, 14, 18].

From a set of inconsistent constraints in a spurious counterexample we
obtain an explanation as an over-approximation of the minimal, inconsistent
subset of these constraints. The smaller the explanation that is generated from
a spurious counterexample, the greater the pruning in the subsequent search.
In this way, the computation of explanations accelerates the convergence of
our procedure.

The paper is structured as follows. Section 2 includes some background
material, whereas Section 3 describes the lemmas on demand approach and
various refinements thereof. Initial experience with this technique is reported
in Section 4. Finally, in Section 6 we draw conclusions.

2. Background

We use the familiar concepts and notations of propositional logic and con-
straint logic. The truth values ������� , �����! �� are assigned to propositional vari-
ables. A literal is a propositional variable or its negation, a clause " is a
disjunction of literals, and a CNF formula is a conjunction of clauses. There is
a linear-time satisfiability-preserving transformation into CNF [22]. A propo-
sitional SAT solver ( # -sat) is, for our purposes, a computable function that
receives a CNF formula and returns either a satisfying truth assignment or
unsatisfiable if such an assignment does not exist.

A (conjunctive) constraint solver, say $ -sat, for a constraint theory $ , is a
computable function that checks whether or not a set of constraints in a theory
$ is satisfiable. For instance, a linear programming system is a constraint
solver for linear arithmetic.

Given a constraint theory $ , the set of Boolean constraints %�&'&)(*
+$,
 in-
cludes all constraints in $ and it is closed under conjunction - , disjunction� , implication . , and negation �0/ The notions of satisfiability, inconsis-
tency, satisfying assignment, and satisfiability solver are lifted to the set of
Boolean constraints in the usual way.

Formulas in %�&'&)(*
+$,
 can be translated into equisatisfiable Boolean for-
mulas as long as the consistency of sets of constraints in $ is decidable.
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Translation schemes between propositional formulas and Boolean constraint
formulas are needed. Given a formula � such a correspondence is easily ob-
tained by abstracting constraints in � with (fresh) propositional variables. Let� be a function that maps constraints in $ to propositional variables. This
mapping induces a mapping from boolean constraint formulas to proposi-
tional formulas. For example, the formula ��� �����	� - ��
 � ����
�� .
� 
 ��� over linear arithmetic is mapped to � 
���
 � � 
 - ��� . ��� , where� 
�������� 
��. � 
 , � 
���
�� ����
�� 
��. � � , and � 
���
���� 
��. � � . More-
over, an assignment � for propositional variables induces a set of constraints.
Thus, let  be the function that performs such mapping. For instance, the
assignment � � � � 
!�. �����  �#" � � �. ��� ���$" � � �. � � �  � � induces the set �
%��
 � � � �'& �(" � 
 � � � 
��)" � 
*& � � . Now, it is easy to see that a CNF
formula � in % & &)(!
+$,
 is equisatisfiable with the Boolean formula (in CNF)

� 
���
 - 
 +,.-0/21434343 1 -6587:9);=<0>@? 
 �BA�
 � /�/�/ � �BADC)
 

where E 
�� 
 is the set of subsets

� AF
G"�/�/�/H"IAJC � of literals ADK in � 
���
 such that its
“interpretation”

�  �
LAF
�
M"�/�/�/N"O �
LADC 
 � is inconsistent in $ . Thus, every %�&'&)(*
+$,

formula can be transformed into an equisatisfiable Boolean formula as long as
there is a constraint solver for $ . On the other hand, the reduction seems to be
infeasible, since an exponential number of $ -inconsistency checks is required
in the worst case. It has been observed, however, that in many practical cases
only small fragments of the set of $ -inconsistencies is needed. The main prob-
lem here is to identify small subsets of the set of all $ -inconsistencies which
are sufficient to establish satisfiability of the Boolean constraint formula at
hand.

3. Lemmas on Demand

We propose an algorithm based on the refinement of Boolean formulas with
inconsistency lemmas that are generated on demand. We restrict ourselves to
formulas in CNF, since most Boolean SAT solvers expect their input to be in
this format.

The procedure PHQSR 
���
 in Figure 1 combines a Boolean SAT solver # -  �� �
and a domain-specific constraint solver $ -sat. # -sat generates a candidate
Boolean assignment for � 
���
 . If there is no such candidate, the algorithm
terminates, since � is clearly unsatisfiable. Otherwise the satisfiability solver
$ -  � � is used to check whether or not the Boolean assignment � determines
a valid assignment for � . If the assignment is not valid, new propositional
clauses (inconsistency lemmas) are added to the propositional formula at
hand. The procedure refine is crucial in that it generates such new clauses.
In order to guarantee soundness, all (interpretations of) clauses returned by
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procedure sat( � )� := � 
�� 
 ;
loop� := # -sat 
 � 
 ;

if � = unsatisfiable then return unsatisfiable
else if $ -sat(  �
%��
 ) then return satisfiable

else � := ��� refine( � )

Figure 1. Lemmas on Demand for �������	��

� .

refine are assumed to be implied by � . In addition, the algorithm is complete
if at least one clause returned by refine is not subsumed by clauses already in� . Alternatively, completeness can also be achieved by disabling infinite loops
in which refine is only adding clauses subsumed by clauses already in � . We
will return to a discussion about specific implementations of refine functions
in Section 3.2.

3.1. CONSTRAINT THEORIES: EXAMPLES

One advantage of our approach is that it works uniformly for a large class
of constraint theories, since the main requirement on these theories is the
decidability of the conjunctive satisfiability problem. We review some of the
more important constraints theories with polynomial satisfiability problem
for the conjunction of a constraints. It follows that the satisfiability problem
for the corresponding Boolean constraint theories are all NP-complete. In the
following we assume as given a countably infinite set � of variables, and
conjunctions of constraints are represented by finite sets.

3.1.1. Equality for Constants.
Satisfiability of conjunctive constraints � consisting of equalities � � � and
disequalities ���� � for variables � , � can be decided in linear time in the size
of � . First, a graph is built, where the nodes are the variables and there is an
edge between nodes � and � iff � contains the equality � � � . Now, � is
satisfiable iff for all ������ in � it is the case that � and � are not connected
in this graph.

3.1.2. Equality for Uninterpreted Functions.
Terms are either variables or applications 	�
��G
 "�/�/�/G"��.C 
 , where 	 is a function
symbol in some given signature of arity � . Satisfiability for a conjunction
of equations and disequations over terms is decidable in � 
������ � 
��,
 
 using
congruence closure [11]. Satisfiability procedures for theories such as the
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one for �����  , � ��� , and � � � can be obtained using congruence closure algo-
rithms [20] by adding all relevant instances of universally quantified axiom
schemes such as � ��� ��� 
����	�  '
���" ��
 . Similarly, using Ackermann’s trick [1]
or a variation thereof, one can transform Boolean constraints over equalities
for uninterpreted terms to an equisatisfiable Boolean problem with equations
over variables as literals by adding all possible instances of the congruence
axiom and renaming uninterpreted subterms with variables. In the worst case,
the number of such axioms is proportional to the square of the length of the
given formula.

3.1.3. Theories of Arithmetic.
Linear arithmetic constraints are built up from inequalities over linear arith-
metic terms including rational constants and addition. When interpreted over
the rationals, the conjunctive satisfiability problem for linear arithmetic con-
straints is polynomial, since it is equivalent to the linear programming prob-
lem, which is known to be polynomial; when interpreting linear arithmetic
terms over the integers, the problem becomes NP-complete over the integers.
The conjunctive satisfiability problem for nonlinear arithmetic constraints,
which include also multiplication, is still decidable when interpreted over
the rationals, but becomes undecidable over the integers. Pratt observed that
most inequalities in program verification are of the form ��
 �
� " , where
" is constant. Think of a conjunction � of these constraints representing a
directed graph whose nodes are labelled with variables and there is an edge
from � to � of weight " for each constraint ��
 ��� " . Now, � is satisfiable iff
there exists a negative-weight cycle in this graph. Using then Bellman-Ford
algorithm, satisfiability of � is decided in time quadratic to the number of
variables in � . Shostak’s [28] loop residue algorithm for linear constraints��� ��
�� � ��� " reduces to Pratt’s algorithm when applied to difference
constraints.

3.1.4. Theory of Fixed-Sized Bitvectors.
A core theory of equalities over fixed-sized bitvectors includes variables � C ,
which are interpreted over bitvectors of width � , extraction � C�� ������� of bits �
through � , and concatenation of two bitvector terms. From the results in [7] it
follows that the conjunctive satisfiability problem for this theory is decidable
in polynomial time when the width of variables and extraction positions are
integer constants. These problems can easily be translated to equisatisfiable
propositional SAT problems by bitwise splitting of the bitvector constraints.
In practice, however, considerable performance gains have been reported by
using domain-specific bitvector procedures instead of SAT solvers [15]. For
example, a bitvector encoding of the shift register BMC benchmark is expo-
nentially more succinct than the corresponding Boolean formula [10].
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3.1.5. Combination of Satisfiability Procedures.
Many verification problems require to solve constraint problems in the union
of constraint theories. There are two basic paradigms for combining decision
procedures. The Nelson-Oppen [21] method combines decision procedures
for disjoint theories by exchanging equality information on the shared vari-
ables. If the constituent decision procedures are polynomial, then the com-
bined Nelson-Oppen procedure is polynomial, too. In Shostak’s method [29,
24, 27] the combination of the theory of pure equality with canonizable and
solvable theories is decided through an extension of congruence closure that
yields a canonizer for the combined theory. Again, if the constituent canon-
izers and solvers are polynomial-time, then Shostak’s algorithm also runs in
polynomial time. All of the individual theories listed above can be combined
using either the Nelson-Oppen or the Shostak approach. Consequently, sat-
isfiability for propositional logic with constraints in the combination of any
subset of these theories is NP-complete.

3.2. REFINEMENTS

Now we describe some possible implementations of the refine function in
Figure 1. A simple implementation of refine creates clauses of increasing size
in each iteration. For example, if � 
���� � � 
��. � 
 , � 
���� � � 
��. � � ,� 
���
 � ��� 
 �. � � , � 
���
 � � 
 �. ��� , � 
���
 � � 
 �. ��� , the first call
to refine produces the clauses � � 
 � � � , and � ��� � ��� , the second one pro-
duces the clauses � � 
 � � ����� � � , � � 
 � � ��� � � � , and so on. This unguided
enumeration is a sound and complete procedure, but it is usually infeasible
in practice, since the number of clauses of size

�
is � 
���� 
 , where � is the

number of constraints.
Alternatively, clauses are added in a guided way based on the analysis of

the set of constraints corresponding to a Boolean assignment. For instance, if
the Boolean assignment � � � � 
 �. ��� ���$" � � �. �����! ��#" � � �. � ���! �� � has been
tested to yield an inconsistent set of constraints, the procedure refine adds
the clause � � 
 � � � � � � . This clause clearly prevents the invalid assignment
to be regenerated by # -sat. Therefore, the procedure of iteratively refining a
Boolean formula based on the newly detected inconsistencies is terminating
and complete. However, a naive implementation is also inefficient in practice,
since only small fragments of the assignment � are inconsistent. For example,
suppose that an invalid assignment is associated with the following set of
constraints:

� ��� � �(" �@� � �(" ��
0� ���)" �(
 � �@�G
 �)" � � � ��
 
 �)" � � � �(
 " � � � �)" � � & � �
It is clear that

� � � � �)" � � & � � or
� � � � �(" � 
 � � � " � � � � 
 
 �)" � � &� � are sufficient to describe the conflict. Therefore, let us assume that there

is a function explain that returns an over-approximation of the minimal set
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of constraints that implies the inconsistency detected by $ -sat. This function
is similar to the conflict resolution procedures found in Boolean SAT solvers
such as GRASP [17] or Chaff [19]. Abstractly, conflict resolution procedures
in Boolean SAT solver can be seen as a function that receives a conflicting
clause 1 and returns a new clause that prevents this specific conflict in future
iterations. These new clauses are called conflict clause, and the process of
constructing them is sometimes referred to as learning. There is an obvi-
ous trade-off between the conciseness of this approximation and the cost
for computing it. We are proposing an algorithm for finding such an over-
approximation based on rerunning the constraint solver � 
���� �,
 times,
where � is some given upper bound on the number of iterations (see below)
and � is the number of given constraints.

The run in Figure 2 illustrates this procedure. The constraints in Fig-
ure 2.(a) are asserted to $ -sat from left-to-right. Since $ -sat detects a conflict
when asserting ��� � � , this constraint is in the minimal inconsistent set.
Now, an over-approximation of the minimal inconsistent sets is produced
by connecting constraints with common variables (Figure 2.(a)). This over-
approximation is iteratively refined by collecting the constraints in an array as
illustrated in Figure 2.(b). Configurations consist of triples 
 � "IA." � 
 , where �
is a set of constraints guaranteed to be in the minimal inconsistent set, and the
integers A , � are the lower and upper bounds of constraint indices still under
consideration. The initial configuration in our example is 
 � ��� � � �@" �("	� 
 . In
each refinement step we maintain the invariant that � � �

array � � ��
MA � � � � �
is inconsistent. Given a configuration 
 � "IA " � 
 , individual constraints of index
between A and

�
are added to � until an inconsistency is detected. In the first

iteration of our running example we process constraints from right-to-left,
and an inconsistency is only detected when processing � �
� � . The new
configuration 
 � ��� ���(" � ��� � �@"G�)"�� 
 is obtained by adding this constraint
to the set of constraints already known to be in a minimal inconsistent set,
by leaving

�
unchanged, and by setting A to the increment of the index of the

new constraint. The order in which constraints are asserted is inverted after
each iteration. Thus, in the next step in our example, we successively add
constraints between � and � from left-to-right to the set

� ��� � �(" � ��� � � .
An inconsistency is first detected when asserting ��� � � � to this set, and
the new configuration is obtained as 
 � ��� � �(" � ��� �(" ��� � � � �@"G�)"G� 
 ,
since the lower bound A is now left unchanged and the upper bound is set
to the decrement of the index of the constraint for which the inconsistency
has been detected. The procedure terminates if � in the current configuration
is inconsistent or after � refinements. In our example, two refinement steps
yield the minimal inconsistent set

� � ��� �(" ��� � � � " ��� � � � . In general, the
number of assertions is linear in the number of constraints, and the algorithm

1 A conflicting clause is a clause in which all literals are assigned to false.
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��� 	�
���	������ � 
�� � ����� 	�����	�
 ��� � ��
 	�

��	�� 	��
��� �����

�"!#�
array

�
0 1 2 3 4

	�

��� 	�
��$	��%��� 	����$	�
 	�

��	�� 	��
�$�

Figure 2. Trace for linear time explain function.

procedure collect( 	 , � )
if 	 � "N
 � /�/�/ � " C then

if 	$&  �
%��
 then return collect(choose(
� " K 
 " K'&  �
%��
 � , � )

else return ( K 9�) 
 1 C+* collect 
�" KO":��

if 	 � "N
�, " � then

return collect 
�" 
 ":��
 � collect 
�" � ":��

if 	 � ��" then

return collect 
�"8":��

if is-constraint( 	 ) then

if 	$&  �
%��
 then return
� 	 � else return

� ��	 �
return -

Figure 3. Collecting relevant constraints.

returns the exact minimal set if its cardinality is less than or equal to the upper
bound � of iterations.

An additional refinement can be introduced in the procedure PGQSR 
���
 , since,
in most cases, for a given assignment � only a small subset of  �
%��
 need to be
considered. Overly eager assignments result in both useless search and overly
specific counterexamples. For instance, assume the formula 
�� - � 
 
 � 
 ��� - � � 
 ,
and the assignment � � � ���. �������@" � 
 �. �������$" � � �. ������� � , suppose the
following two situations:

1. � 
 � 
�
 �.�� � � , and � 
 � � 
 �.�����
 � , $ -sat(  �
%��
 ) returns unsatisfiable,
since

� ��� �(" � � 
 � � is inconsistent. Therefore the assignment �
is discarded and the search continues. However, constraint � � is clearly
irrelevant, that is, it is a don’t care.

2. � 
 � 
�
 �. � � � , and � 
 � � 
 �. ��� � , $ -sat(  �
%� 
 ) returns satisfiable.
However, the resulting set of models is overly specific in that the value of
� is restricted to those in the interval � �("G� � .

To solve this problem we keep the structure of the formula before CNF
translation. The structure of formula is used to decide whether a constraint
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procedure refine-1( � ) return
�

clausify(  �
%� 
 ) �
procedure refine-2( � ) return

�
clausify(explain(  �
�� 
 )) �

procedure refine-3( � ) return
�

clausify(collect( � , � )) �
procedure refine-4( � ) return

�
clausify(explain(collect( � , � ))) �

procedure clausify( � ) return
� � 
LA 
 
��(A�� & � -'A � �BA�� �

Figure 4. Refinement functions.

is relevant in a given assignment or not. The procedure �����	��
�� R'
 	�":��
 in Fig-
ure 3 collects all relevant constraints for a formula 	 and an assignment � .
For simplicity, this procedure only considers the propositional connectives:� , , , and � . The CNF translation adds a new propositional variable for
each non-atomic sub-formula. It is important to notice that, 	 &	 �
%��
 iff� 
 � 
 	 
 
 � true, that is, the formula 	 is assigned to true in the assignment � .
The function is-constraint( 	 ) returns true, if 	 is a constraint. For instance,
the formula 
�� - � 
 
 � 
 ��� - ��� 
 is represented as � 
 ��� � � � 
 
 � � 
�� � � � � 
 ,
and is translated to the following CNF formula:


 � 
 � � � 
 -

 ��� � � � 
 � � 
 
 - 
 � � 
 � � 
 - 
 � � 
 � � 
�
 -

�� � � � � � � � 
 - 
 � � � � ��� 
 - 
 � � � � � � 


where, � 
 and � � are auxiliary propositional variables, that is, � 
 � � 
 ��� � � � 
 

and � � � � 
�� � � � � 
 . Given an assignment � � � � �. ��� ���@" � 
 �. �������$" � � �.
�������@" � 
 �. �������$" � � �.�� � �  � � , it is clear that �����	��
��@R'
 	�":��
 � � � " � 
 � , that
is, the value of � � is a don’t care.

Figure 4 summarizes the guided refinement procedures discussed above.
The procedure refine-1 implements the naive approach without explanation
capability and no specific consideration of don’t cares. The procedure clausify
converts a set of conflicting constraints to a clause. Procedure refine-2 uses the
explanation facility but no don’t cares, whereas refine-3 uses explanations and
handles don’t cares by collecting relevant constraints with collect in Figure 3.
Finally, the procedure refine-4 uses all optimizations described in this section.

3.3. ONLINE INTEGRATION

So far, we described an offline integration of # -sat and $ -sat, in which the
solvers are treated as black boxes, and both procedures are restarted in each
refinement step. However, some $ -sat tools support backtracking. In this case,
an online integration is more appropriate, where choices for propositional
variable assignments are synchronized with extending the logical context
of the $ -sat with the corresponding atoms. Detection of inconsistencies in
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procedure dpll()
loop

if decide() = done then return satisfiable
loop

cc := bcp();
if cc = nil then break
if not conflict-resolution(cc) then

return unsatisfiable

Figure 5. Davis-Putnam procedure.

the logical context of the $ -sat triggers backtracking in the search for vari-
able assignments. Furthermore, detected inconsistencies are propagated to
the propositional search engine by adding the corresponding inconsistency
clause (or, using an explanation function, a good over-approximation of the
minimally inconsistent set of atoms in the logical context).

Figure 5 contains the main loop of the Davis-Putnam procedure found in
most Boolean SAT solvers [17]. The algorithm starts with an empty boolean
assignment, and traverses the space of truth assignments implicitly using
a backtrack search algorithm. The search process iteratively performs the
following steps: extends the current assignment by making a decision as-
signment to an unassigned variable (procedure decide); extends the current
assignment by following logical consequences of the assignments made so
far (procedure bcp), the deduction process may also identify and return a con-
flicting clause (variable cc), implying that the current assignment is not satis-
fiable; undoes (backtracks) the current assignment, if a conflict was detected,
thus allowing another assignment to be tried (procedure conflict-resolution).
The procedure bcp implements the boolean constraint propagation which cor-
responds to the application of the unit clause rule proposed by M. Davis and
H. Putnam [9].

As described above, the explain function is similar to the conflict res-
olution procedure found in Boolean SAT solvers [17, 19]. Therefore, the
conflict resolution procedure can be used to refine the result produced by
the explain function in an online integration. For instance, suppose that the
explain function returns the set

� � � � �(" � & � � as an explanation for
a conflict detected by $ -sat. Then, this set is used to build the conflicting
clause

� � 
�� � � � 
M" � 
�� & � 
 � , which is sent to the conflict resolution
procedure in # -sat. A conflict clause is then produced by # -sat. Figure 6
contains our online algorithm. The procedure propagate-to- $ is responsible
to send recently assigned constraints to $ -sat, it returns a conflicting clause
if an inconsistency is detected. In other words, the procedure propagate-to-
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procedure $ -dpll()
loop

status := decide();
if status = done or should-propagate-to– $ then

cc := propagate-to- $ ();
if cc �� nil then

status := not-done;
if not conflict-resolution(cc) then

return unsatisfiable
if status = done then return satisfiable
loop

cc := bcp();
if cc = nil then break
if not conflict-resolution(cc) then

return unsatisfiable
procedure propagate-to- $ ()

relevant-constrains := collect( � , � );
if $ -assert(relevant-constrains) return nil
return clausify(explain(relevant-constrains))

Figure 6. Online Integration.

$ implements the bridge between # -sat and $ -sat. In our online algorithm,
the procedure collect behaves slightly different, since it must handle unas-
signed variables, since � can be a partial assignment. We also keep track of
which constraints were already sent to $ -sat, so the procedure collect only
collects the unsent constraints. The procedure $ -assert is an incremental ver-
sion of procedure $ -sat in Figure 1, that is, it extends the logical context
of $ -sat with the new constraints in the variable relevant-constrains. The
procedure propagate-to- $ is called when a satisfiable boolean assignment is
found (decide returns done), or when the flag should-propagate-to- $ is active.
Different heuristics can be used to activate this flag, in our implementation it
is activated every time a given number of new constraints are assigned to a
boolean value. So, if the problem only contains propositional variables, our
algorithm will behave like a standard Boolean SAT solver. Although it is not
described in the Figure 6, the procedure decide must request $ -sat to create
a new backtracking point, and conflict-resolution must request $ -sat to exe-
cute the backtracking. Our integrated algorithm is compatible with any kind
of decision heuristic and standard optimizations such as non-chronological
backtracking and learning [17].
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� 
 � � � ���� 
 �!� � � 
 � � � � � � �(
 � � �

��� 
 �!� �
�G
 � � � ����� �!� � 
 
 � � 
 � � � � 
�� 
 � � � 


���� �!� �
Figure 7. Bakery Mutual Exclusion Protocol.

4. Experiments

We implemented several refinements of the basic lazy theorem proving algo-
rithm from Section 3, using Chaff [19] for the offline integration, and ICS [12]
for deciding constraints. ICS is a ground decision procedure for the combi-
nation of linear arithmetic constraints, the theory of tuples, arrays, bitvectors,
and equality over uninterpreted functions. Since state-of-the-art Boolean SAT
solvers such as Chaff are missing the necessary API for realizing such an
online integration, we used a home-grown SAT for realizing the online in-
tegration. We describe some of our experiments using the Bakery mutual
exclusion protocol in Figure 7 2 with initial states � 
 � � - � � � � . The
basic idea is that of a bakery, where customers take numbers, and whoever
has the lowest number gets service next. Here, of course, “service” means
entry to the critical section. In our example, there are only two processes ( ��

and � � ). The program location � � ( � � ) represents the critical section of the
process � 
 ( � � ). The variable � 
 ( � � ) contains the number that � 
 ( � � ) uses to
enter the critical section, it is zero if the process is not trying to enter the
critical section. Only one process can execute a transition at each time. In
this example, we are interested in the property that the processes are never
in their critical sections at the same time. For validating this property we use
bounded model checking (BMC) to search for counterexamples of length

�
to

the model checking problem � 
 � � , where � is the system (program) being
verified, and � is the mutual exclusion property. This technique has been
introduced for finite systems in [4]. Here, we are working with an extension
of the BMC methodology to infinite-state systems [10, 30].

We use the convention that current variables are always written as � 
 , � �
whereas the next-state variables are written as � � 
 , ���� . In addition, � K repre-
sents the value of the variable � at time � . The variable � " 
 (� " � ) is the program
counter of the process � 
 ( � � ). Thus the formula that describes the initial state
is:

� " � 
 � � 
 - � �
 � � - � " �� � � 
 - � �� � �
2 See also http://www.csl.sri.com/ � demoura/bmc-examples.
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We want to verify the property � 
 � ")
 � � � - � " � � � � 
 , thus, a coun-
terexample of length

�
is a trace that reaches the goal (� " � 
 � � � - � " �� � � � ).

The transitions are encoded as:


 � " K 
 � � 
 - � K�� 

 � � K� 
 � - � " K�� 

 � � � - � " K�� 
� � � " K � - � K�� 
� � � K� 
 �

 � " K 
 � � � - 
�� K� � � � � K 
 � � K� 
 - � K�� 

 � � K 
 - � " K�� 

 � �#� -
� " K�� 
� � � " K � - � K�� 
� � � K� 
 �


 � " K 
 � � � - � K�� 

 � � - � " K�� 

 � � 
 - � " K�� 
� � � " K � - � K�� 
� � � K� 
 �

 � " K � � �H
 - � K�� 
� � � K 
 
 � - � " K�� 
� � � � - � " K�� 

 � � " K 
 - � K�� 

 � � K 
 
 �

 � " K � � � � - 
�� K 
 � � � � 
�� K 
 � � K� 
 
 - � K�� 
� � � K� - � " K�� 
� � � � -
� " K�� 

 � � " K 
 - � K�� 

 � � K 
 
 �


 � " K � � � � - � K�� 
� � � - � " K�� 
� � �H
 - � " K�� 

 � � " K 
 - � K�� 

 � � K 
 

This enconding includes the frame axioms to describe which variables a

transition does not affect. The program counter (� "@
 and � " � ) can be encoded
using propositional variables, since their domains are finite.

Table I. Offline lazy theorem proving (’-’ is time �����	�
� secs).

depth refine-2 refine-3 refine-4

time conflicts time conflicts time conflicts�
45.23 577 0.71 66 0.31 16�
83.32 855 2.36 132 0.32 18


286.81 1405 12.03 340 1.75 58

� 627.90 1942 56.65 710 2.90 73�
1321.57 2566 230.88 1297 8.00 105

��� - - 985.12 2296 15.28 185

� � - - - - 511.12 646

Table I includes some statistics for three different offline configurations
depending on which refine procedure described in Section 3 is used. For
each configuration, we list the total time (in seconds) and the number of
conflicts detected by the decision procedure. This table indicates that the
effort of detecting the relevant constraints, and the linear explain function are
essential for efficiency. Recall that the experiments so far represent worst-
case scenarios in that the given formulas are unsatisfiable. For BMC prob-
lems with counterexamples, however, our procedure usually converges much
faster. Consider, for example the mutual exclusion problem of the Bakery
protocol with the assignment � �� �!� � � 
 � instead of � �� �!� � 
 
 � . The
corresponding counterexample for

� ��� is produced in a fraction of a second
after adding 53 lemmas.
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Table II. Online lazy theorem proving.

depth no explain explain

time conflicts calls to ICS time conflicts calls to ICS

5 0.03 24 162 0.01 7 71

6 0.08 48 348 0.01 7 83

7 0.19 96 744 0.02 7 94

8 0.98 420 3426 0.05 29 461

9 2.78 936 7936 0.19 70 1205

10 8.60 2008 17567 0.26 85 1543

15 - - - 4.07 530 13468


 � 
G" � 
G"��H
G" � � 
 . 
 � 
G" � 
G"�� � "G� 
 � � 
 .

 � � "���
 � � "�� � "G� 
 � � 
 . 
 � � "���
 � � "�� � "G� 
 � � 
 .

 � � "���
 � � "��H
G"I� 
 . 
 � � "���
 � � "��H
G"I� 
 .

 � � "���
 � � "�� � "G� 
 . 
 � � "���
 � � "�� � "G� 


Notice that this counterexample represents a family of traces, since it is
parametrized by (newly introduced constants)

� 
 and
� � with

� 
 " � � � � .
The results of using this online integration for the Bakery example can be

found in Table II for two different configurations.3 For each configuration,
we list the total time (in seconds), the number of conflicts detected by ICS,
and the total number of calls to ICS. Altogether, using an explanation facil-
ity clearly pays off in that the number of refinement iterations (conflicts) is
reduced considerable.

5. Related Work

For the special case of equality theories over terms with uninterpreted func-
tion symbols, Ackermann [1] already defined a reduction to Boolean logic by
adding propositional encodings of all relevant instances of the congruence
axiom. Variations of Ackermann’s trick have been used, for example, by
Shostak [28] for arithmetic reasoning in the presence of uninterpreted func-
tion symbols, and various reductions of the satisfiability problem of Boolean
formulas over the theory of equality with uninterpreted function symbols to
propositional SAT problems have recently been described by Goel, Sajid,
Zhou, and Aziz [13], by Pnueli, Rodeh, Shtrichman, and Siegel [23], and by

3 The differences in the number of conflicts compared to Table I are due to the different
heuristics of the SAT solvers used.
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Bryant, German, and Velev [5]. In a similar vein, an eager reduction to propo-
sitional logic for constraints in Pratt’s difference logic have been described
by Strichman, Seshia, and Bryant [31]. Even for such a simple constraint
theory, however, an exponential number of constraints may be generated in
the preprocessing stage.

Compared with these eager reductions, our lazy integration procedure
uniformly works for logics with a rich set of data types. Moreover, instead
of constructing an equisatisfiable Boolean formula a priori, we compute a
sequence of refinements by adding propositional lemmas as obtained from
an analysis of spurious propositional assignments. In this way, the semantics
of constraints is introduced gradually and on on demand. In this way, only
inconsistency lemmas of relevance to the satisfiability of the formula are
added.

In research that is most closely related to ours, Barrett, Dill, and Stump [3]
describe an integration of Chaff with CVC by abstracting the Boolean con-
straint formula to a propositional approximation, then incrementally refin-
ing the approximation based on diagnosing conflicts using theorem proving,
and finally adding the appropriate conflict clause to the propositional ap-
proximation. This integration corresponds directly to an online integration
in the lemmas on demand paradigm. Their approach to generate good expla-
nations is different from ours in that they extend CVC with a capability of
abstract proofs for over-approximating minimal sets of inconsistencies. Also,
optimizations based on don’t cares are not considered explicitly in [3]. The
experimental results in [3] coincide with ours in that they suggest that lazy
theorem proving without explanations (there called the naive approach) and
offline integration quickly become impractical. Using equivalence checking
for pipelined microprocessors, speedups of several orders of magnitude over
their earlier SVC system are obtained.

Armando, Castellini, and Giunchiglia [2] propose a SAT-based approach
for the special case of solving disjunctions of Pratt’s difference constraints. In
their experiments, they observe excessively redundant computations, which
can largely be eliminated using our explanation capabilities. A preprocessing
step for computing inconsistency clauses with two literals is used [2] to sim-
plify problems. We also found it to often to be advantageous to pregenerate
2- and even 3-inconsistencies to accelerate convergence. Optimizations based
on don’t cares are not considered in [2].

6. Conclusion

The main contribution of this paper is a lazy integration of propositional SAT
solvers with constraint solvers for effectively deciding the satisfiability prob-
lem for propositional constraint formulas. The key idea is to use constraint
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solvers for suggesting, on demand, useful inconsistency lemmas. In this way,
only inconsistency lemmas of relevance to the satisfiability of the formula
are added. Various refinements such as online integration and acceleration of
convergence using explanation functions are needed to make the lemmas on
demand approach work effectively in practice.
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Abstract. Formal analyses can provide valuable assurance for high confidence
software and systems. The analyses can range from strong typechecking through
test case generation and static analysis to model checking and full verification. In
all cases, the tools that support the analyses use formal deduction in some way or
other. ICS is a fully automatic, high-performance decision procedure for a broad
combination of theories that can be embedded in all tools of this kind to provide
them with a core deductive capability of exceptional power and performance. We
describe the design choices underlying ICS and the capabilities it provides.

1 Introduction

Formal deduction—that is, automated theorem proving—lies at the heart of all tools
for formal analysis of software and system descriptions. In formal verification systems
such as PVS [10], the deductive capability is explicit and visible to the user, whereas in
tools such as test case generators it is hidden and often ad-hoc. We believe that all tools
for formal analysis would benefit—both in performance and ease of construction—if
they could draw on a powerful embedded service to perform common deductive tasks.

Examples of the tasks that can be required are those that ask whether one formula
is a consequence of others (e.g., is4 × x = 2 a consequence ofx ≤ y, x ≤ 1 − y,
and2 × x ≥ 1 when the variables range over the reals?), and those that ask whether
an assignment to variables can be found that satisfies a set of constraints (e.g., find an
a such thatcar(a) = cons(b, c)). The first task is a decision problem that might arise
in verification, the second is a constraint satisfaction problem that could arise in test
case generation. Notice that both examples involve interpreted theories: rational linear
arithmetic in the first, and lists in the second.

An embedded deductive service should be fully automatic, and this suggests that its
focus should be restricted to those theories whose decision and satisfiability problems
are decidable. However, there are some contexts that can tolerate incompleteness (e.g.,
in extended static checking, the failure to prove a true theorem results only in a spurious
warning message), and others where speed may be favored over completeness (e.g., in
? This research was supported by SRI internal investment funds, by NASA under contract

NAS1-00079, by the DARPA NEST program under AFRL contract F33615-01-C-1908, and
by NSA under contract MDA904-02-C-1196
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construction of abstractions), so that undecidable theories (e.g., nonlinear integer arith-
metic) and those whose decision problems are often considered infeasible in practice
(e.g., real closed fields) should not be ruled out completely.

Most problems that arise in practice involvecombinationsof theories: the question
whether

f(cons(4× car(x)− 2× f(cdr(x)), y)) = f(cons(6× cdr(x), y))

follows from 2 × car(x) − 3 × cdr(x) = f(cdr(x)), for example, requires simulta-
neously the theories of uninterpreted functions, linear arithmetic, and lists. The ground
(i.e., quantifier-free) fragment of many combinations is decidable when the full (i.e.,
quantified) combination is not, and practical experience indicates that automation of
the ground case is adequate for most applications.

Practical experience also suggests several other desiderata for an effective deductive
service. Some applications (e.g., construction of abstractions) invoke their deductive
service a huge number of times in the course of a single calculation, so that perfor-
mance of the service must be very good (e.g., tens or hundreds of thousands of invoca-
tions per second). Other applications (e.g., proof search) explore many variations on a
formula (i.e., alternately asserting and denying various combinations of its premises),
so the deductive service should not examine individual formulas in isolation, but should
provide a rich API that supports incremental assertion, retraction, and querying of for-
mulas. Other applications (e.g., test case generation) generate propositionally complex
formulas (i.e., formulas with thousands or millions of propositional connectives applied
to terms over the decided theories), so that this type of proof search must be performed
efficiently inside the deductive service.

We have developed a system called ICS (the name stands forIntegrated Canon-
izer/Solver) that can be embedded in applications to provide deductive services satis-
fying the desiderata above. In the following sections, we outline the design choices
embodied in ICS, its capabilities and method of operation, and describe some of its
applications.

2 Core ICS

The core of ICS is a decision procedure for a combination of ground theories includ-
ing equality with function symbols, integer and rational linear arithmetic, fixed-length
bitvectors, arrays, tuples, and coproducts (the combination of the last two provides ab-
stract datatypes such as lists and binary trees). Apart from bitvectors, this capability is
similar to that of the decision procedures in PVS (e.g., theassert command), but ICS
can handle much larger formulas.

It is crucial to its utility that ICS is able to decide acombinationof theories. It is
desirable to achieve this by combining decision procedures for its individual theories in
a modular fashion. However, there is a tradeoff between modularity and performance.
The combination method of Nelson and Oppen [9], for example, imposes few restric-
tions on its component theories and their decision procedures, but yields relatively low
performance. This is because the separate decision procedures do not share much state
and communicate only by propagating newly discovered equalities back and forth. The
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combination method of Shostak [14], on the other hand, requires that its component
theories arecanonizableandsolvable, and achieves high performance by tightly inte-
grating these components through an efficient data structure for congruence closure.
Most theories of practical interest are canonizable and solvable, so ICS uses a corrected
version of Shostak’s method. Theories that do not satisfy the requirements for Shostak’s
method can be integrated using Nelson and Oppen’s method above the Shostak combi-
nation.

As mentioned, an efficient data structure and procedure for congruence closure lies
at the heart of ICS. This provides a decision procedure for the theory of equality with
uninterpreted function symbols, and is used to integrate decision procedures for other
canonizable and solvable theories. Early treatments of this integration were incorrect
and could yield incomplete or nonterminating procedures. The first correct treatment
for the integration of congruence closure with one other theory was developed by
Shankar and Rueß [12]; this construction has been formally verified in PVS by Ford and
Shankar [6]. The extension to multiple theories is not straightforward because, although
the combination of the canonizers for the constituent theories yields a canonizer for the
combined theory (which is an independently useful artifact), the combination of the
solvers may not (contrary to previous belief) be a solver for the combination. The first
correct extension to multiple theories also was developed by Shankar and Rueß [13].

A decision procedure (i.e., canonizer and solver) for rational linear arithmetic is
quite straightforward and efficient, but integer linear arithmetic is more challenging
because it can require case-splitting (i.e., search) to determine whether some property
is satisfied by an integer in a certain range (hence, the problem is NP-complete). There
are straightforward methods for this problem that are easily shown to be complete (e.g.,
the method of Fourier-Motzkin), but they are inefficient on cases that commonly arise
in practice (e.g., constraints of the formx − y ≤ c, wherex, y are variables andc
is an integer constant). ICS uses a new method that is efficient on the common cases,
complete, and smoothly extensible to richer fragments such as nonlinear arithmetic.

Verification and model checking for hardware generally involve reasoning over
bitvectors. It is, of course, possible to treat each bit as a Boolean variable and then
use an efficient decision procedure for the Booleans, but this immediately invites an
exponential case explosion. A better method is to split the bitvectors into chunks (not
individual bits) and to do so only when necessary. ICS uses a method of this kind for
fixed-length bitvectors [2,7] and integrates it with integer arithmetic for their numerical
(e.g., unsigned and twos-complement) interpretations.

In addition to the theories described above, ICS also decides the theories of ar-
rays, tuples, and coproducts; the combination of the latter two can represent abstract
datatypes such as lists and binary trees.

Core ICS operates as a decision procedure: it reports whether the formula under
consideration is valid—which is equivalent to its negation being unsatisfiable. In the
case that a formula is satisfiable, the ICS data structures contain sufficient information
to extract a satisfying assignment—although this is not yet implemented.
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3 ICS with SAT

Core ICS operates on formulas that are conjunctions of terms in the combination of its
theories. However, many applications generate proof obligations or constraints that have
richer propositional structure. For example, a test case of length 2 for a shift register may
reduce to satisfiability of the following formula.

(x1 = x0[1 : n− 1] ++11) ∧ (x2 = x1[1 : n− 1] ++11) ∧
(x0 6= 0n ∨ x1 6= 0n ∨ x2 6= 0n) ∧ (x0 = x2 ∨ x1 = x2).

wherex[1 : r] denotes extraction of bits 1 throughr of the bitvectorx of lengthn,
++ denotes bitvector concatenation, and1r (resp.0r) denotes the bitvector of lengthr
whose bits are all 1 (resp. 0).

The disjunctions in formulas such as this necessitate search and the challenge is to
integrate this capability with core ICS. The PVSground command provides modest
functionality of this type with the assistance of an external BDD package. The problem
with this approach is that the BDD represents all possible satisfying assignments (and
is therefore expensive to construct), whereas we would be satisfied with just one (or
the knowledge that there are none). Propositional satisfiability solvers (SAT solvers)
provide this more targeted type of search and recent advances have made them extraor-
dinarily fast for many problems that arise in practice—often they are able to discharge
formulas with hundreds of thousands of variables and millions of terms in seconds or a
few minutes [8].

To connect core ICS to a SAT solver, we usevariable abstraction: each interpreted
term (e.g.,x1 = x0[1 : n − 1] ++11) is replaced by a distinct propositional variable
(e.g.,p) and the SAT solver is asked to solve the resulting propositional system. The
truth values assigned to the propositional variables by the SAT solver are then extended
to their original interpretations and the core ICS decision procedure checks them for
consistency. If the interpretations are consistent, then we are done; if not, the root of the
inconsistency can be generated and passed to the SAT solver as an additional constraint
(we call this the generation of “lemmas on demand” [3]). For example, ifp represents
the termx = y, q representsf(x) = f(y), and the SAT solver returnsp,¬q, then core
ICS will detect the inconsistency in the interpretationx = y ∧ f(x) 6= f(y) and can
generate the lemma¬p∨ q as a new constraint for the SAT solver. Proceeding back and
forth in this way, the SAT solver generates new candidate assignments and the deci-
sion procedure generates new additional constraints until either we find an assignment
whose interpretation is satisfiable, or the set of constraints becomes unsatisfiable. The
effectiveness of this approach depends on how rapidly the search space is cut down at
each stage by the new constraints generated by the decision procedure. The most potent
constraints would be the true “root causes” of the inconsistencies detected at each stage
but it can take a long time to calculate such precise constraints and this negates the sav-
ings due to the smaller search space. Good overall performance is obtained using fast
heuristics that generate an approximate “explanation” for the root cause of each incon-
sistency [3]. We are still tuning our heuristics in search of the best overall performance.

Full ICS integrates the combined decision procedure of core ICS with a SAT solver
in the manner described. We do not use an off-the-shelf SAT solver because the back-
and-forth interaction with the decision procedure imposes novel requirements (e.g., we
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want to process new constraints incrementally from the current state, not restart from
the beginning, and we also use “don’t care” assignments), but we do employ many
of the techniques that make such solvers fast [15]. Our experiments indicate that the
integrated SAT solver in ICS yields several orders of magnitude improvement over a
looser combination using an off-the-shelf SAT solver. Used purely as a SAT solver, the
performance of full ICS is comparable to Chaff [8].

Like core ICS, full ICS operates as a decision procedure, but we plan to extend it to
a satisfiability procedure in the near future.

4 Using ICS

Core ICS is implemented in Objective Caml, and its SAT solver in C++; the full sys-
tem functions as a C library and can be called from virtually any language. We have
experience using it from C, C++, Lisp, Scheme, and Objective Caml. The system was
developed under Linux but has been ported to MAC OS X and to Windows XP (under
cygwin), and we anticipate little difficulty in porting it to other systems.

In addition to its C interface, ICS is provided with a simple text-based interactor
that can be used for experimenting with its capabilities. ICS maintains a state that can
be manipulated and queried by a series of commands. Most importantly, theassert
command extends the current state with a new fact. The following command, for exam-
ple, adds an equality over terms built from the the variablex , the uninterpreted function
symbol f , the operators of linear arithmetic, and S-expressions built from the pairing
functioncons(.,.) and its first and second projectionscar(.) andcdr(.) .

ics> reset.
:ok
ics> assert 2 * car(x) - 3 * cdr(x) = f(cdr(x)).
:ok

We can now assert a second equality, and the responsevalid indicates that this is
deduced to be a consequence of the previously asserted facts.

ics> assert f(cons(4 * car(x) - 2 * f(cdr(x)), y))
= f(cons(6 * cdr(x), y)).

:valid

The commandsat invokes the SAT solver (here| denotes disjunction and& is
conjunction).

ics> sat (x = 1 | x = 2 | x = 3) & x > 1.
:sat(s5) [-1 + x > 0; x = 3]

The response from ICS indicates that all assignments tox satisfying both-1 + x
> 0 and x = 3 , describe models for the input formula (the annotations5 simply
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names this logical state). There is obviously only one possible assignment here, so the
description is not minimal. Construction of concrete satisfying assignments is planned
for the near future.

5 Applications of ICS

ICS can be used to provide embedded deductive support for existing applications, but
its speed and power also make new applications possible. We describe representatives
applications of each kind.

5.1 Discharging Proof Obligations

ICS can be used to augment or replace existing deductive capabilities in systems that
generate and discharge proof obligations.

For example, ICS can be used in place of the standard decision procedures in PVS.
Because the standard decision procedures have different capabilities than ICS, a PVS
proof script developed using the former will generally require adjustment to work with
the latter. For testing and benchmarking purposes, we have run PVS in a mode where
proof scripts are guided by the standard decision procedures, but ICS is run in parallel
and its behavior compared with the standard procedures. Differences were examined
to ensure they were intended. We used proofs of the 750 theorems in the PVS pre-
lude (built-in library) as our test bench. Despite its more costly interface (PVS and its
standard decision procedures are implemented in Lisp, from which ICS is invoked as a
foreign-function through its C interface) and the fact that PVS uses only its core capabil-
ities, ICS is substantially faster on examples that really exercise the decision procedures
(for small examples, any differences are swamped by the overhead of other processing
in the PVS prover). Future versions of PVS will make fuller use of ICS capabilities. We
anticipate that this will be beneficial both to users of PVS and to those who intend to use
ICS directly but wish to use PVS to explore and prototype the deductive “glue” needed
to reduce their application to the capabilities provided by ICS. Such glue is likely to
involve Skolemization (and possibly quantifier instantiation), and definition expansion
(and possibly rewriting).

We are currently optimizing the capabilities of ICS to support the deductive require-
ments of the Destiny verification system under development at NSA.

5.2 Bounded Model Checking and Test Case Generation

Bounded model checking (BMC) has become a popular debugging and assurance method
for hardware designs [1]. Bounded model checking asks whether there is a counterex-
ample of lengthk or less to a given propertyP (typically an invariant, but the method
works for full linear temporal logic) of a design represented as an initiality predicate
I and transition relationT . For hardware designs at the register transfer level,P , I,
andT are represented directly in propositional calculus and the BMC problem then
reduces to a (typically, huge) SAT problem. The performance of modern SAT solvers
allows BMC to find deeper bugs on bigger designs than a standard BDD-based symbolic
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model checker. More importantly, BMC requires less tinkering (e.g., variable ordering,
downscaling) by the user than standard model checking. Typically, the process is to try
k = 1, thenk = 2, 3, . . . until either a counterexample is found, or the resources of the
computer—or the patience of the user—are exhausted.

Full ICS immediately allows BMC to be extended from hardware designs consisting
of purely Boolean circuits to software and system designs (and hardware designs at
higher levels of description) whose state is defined over integers, arrays, bitvectors, and
datatypes, and their corresponding operations—in short, over any combination of the
theories decided by ICS. We call this “Infinite BMC” since the state space is potentially
infinite [5].

Given a system specified by initiality predicateI and transition relationT , there is
a counterexample of lengthk to invariantP if there is a sequence of statess0, . . . , sk

such that

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬P (sk).

The Infinite BMC problem is simply to find a satisfying assignment fors0, . . . , sk in
this formula—which is exactly the capability of ICS.1

Using correct designs supplied for evaluation purposes by an industrial collaborator
(they are hardware designs, but we do not know their origins or purpose), we performed
Infinite BMC for increasingk until the time taken by ICS approached 30 minutes (on a
2GHz Pentium IV with 1GB of memory). At this point, one of the BMC formulas had
227,108 terms and its representation as a text file occupied 5Mb, another had 105,844
terms and a 3Mb text file, while a third had 72,291 terms and a 2Mb text file. In all cases,
ICS required less than 80 Mb of memory. Observe that these are worst-case examples:
the designs are correct (for the invariants concerned) and hence the BMC formulas have
no satisfying assignments and the full search space must be explored. Other invariants
do manifest bugs in the second of the designs mentioned above, and ICS found a coun-
terexample to one of them of length 4, and a counterexample to another of length 6,
both in under a minute.

Structural test coverage criteria, including the MC/DC criterion required for flight
control software, can be specified as formulas in temporal logic [11]. Counterexam-
ples to the negation of these formulas then constitute suitable test cases. Experiments
with symbolic model checkers have shown that they can be used within this framework
as very effective test case generators. Bounded model checkers should be even more
effective (since they are specialized to the efficient construction of counterexamples).
However, these strictly Boolean and propositional methods apply only to Boolean ab-
stractions of software designs specified over arithmetic variables and data structures
and can therefore generate infeasible test cases. Infinite BMC using ICS can be applied
directly to software designs, thereby eliminating infeasible test cases and achieving ac-
curate coverage.

1 As noted earlier, ICS currently operates as a decision procedure: it can indicate whether a
formula is valid or, equivalently, whether its negation is unsatisfiable. In the case that the
negation to a formula is satisfiable, ICS does not yet produce a satisfying assignment (i.e., a
concrete counterexample to the original formula). However, the Infinite BMC procedure does
extract “symbolic counterexamples” from information in the ICS data structures.
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5.3 k-Induction

If BMC finds a counterexample of lengthk, then we have found a bug, and are done.
But if we fail to find a counterexample for anyk up to some limit on our resources or
patience, we cannot conclude that we have verified the design—for there could always
be a counterexample of length longer than any that we tried.2 To verify the design (for
safety propertyP ), we must perform some kind of inductive argument that applies to
traces of all lengths. The usual way to do this by theorem proving is to establish that
the property concerned isinductive: that is, it is true of all initial states (i.e.,I(s) ⊃
P (s)) and if it is true of some state, then it is true of all its successors (i.e.,P (s) ∧
T (s, t) ⊃ P (t)). The weakness of this method is that the second condition may be
violated by a states that is unreachable from an initial state. We must then replaceP
by a stronger property that excludes the troublesome states and repeat the process. It is
not uncommon to have to iterate this process many tens of times. Strengthening often
requires human insight, though a good heuristic is often to conjoin toP a formula that
asserts thats is unreachable.

A stronger form of induction requires that only when we have a sequence ofk states
satisfyingP must all the successors also satisfyP . This is calledk-induction, and it
combines well with BMC: we first perform BMC of depthk and if that fails to refute the
formula, we tryk-induction (the formulas generated are very similar to those for BMC),
and if that fails, we repeat the process fork + 1 (k + 1-induction is stronger—proves
more formulas—thank-induction). Subject to certain side conditions (for example, the
initial k-sequence should be acyclic),k-induction is acompletemethod for finite-state
systems. These results generalize from the finite- to infinite-state case when ICS is
substituted for a SAT solver, and the method becomes complete for important classes
of infinite-state systems, such as timed automata [4].

Our Infinite BMC procedure built on ICS has been extended to performk-induction
(with additional optimizations–e.g., requiring that only the first state in a sequence may
be an initial state) and to strengthen invariants (using the heuristic described earlier).
Standard examples such as the abstracted Futurebus and Illinois cache coherence pro-
tocols are verified in seconds by this method, and standard timed automata examples
such as the Fischer protocol and train gate controller are verified in fractions of a second.
These results suggest that ICS can be competitive with specialized systems operating in
their own domains.

6 Conclusion

ICS packages a powerful and efficient set of deductive capabilities in the form of a C
library that can easily be accessed by other applications. This makes deduction available
as anembeddedcapability, whereas previously it was available only through theorem
provers intended for standalone operation.

2 For some examples, it is possible to compute acompleteness threshold, such that failure to
find a counterexample shorter than the threshold is sufficient for verification. However, for
most examples in practice, it is either too expensive to compute the threshold, or its value is
beyond the reach of BMC.
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Powerful embedded deduction will allow many conventional tools to provide new
capabilities, or more potent forms of existing capabilities, at little cost. For example, a
compiler can perform truly accurate common subexpression detection by asserting the
path predicates to ICS, then using its canonizer to compare subexpressions.

Simple formal analysis tools (e.g., completeness and consistency checkers for tabu-
lar specifications, test case generators, and bounded model checkers) can obtain most of
their deductive support from ICS, with little deductive “glue” needed in the application.

We plan to enlarge the services provided by ICS so that even less deductive glue
will be required in future. In particular, we intend to add quantifier elimination, rewrit-
ing (which will also perform definition expansion), and forward chaining (which is
very effective for transitive relations). The quantified form of the combination of theo-
ries used in ICS is not decidable (e.g., quantified integer linear arithmetic—Presburger
Arithmetic—becomes undecidable when uninterpreted function symbols are added),
but the circumstances that trigger undecidability are sharply defined (and rare in prac-
tice) so that it is possible to decide a very large and useful fragment of the full theory.
We expect that our methods will be heuristically effective on the undecidable fragment
also, and on other undecidable extensions (e.g., nonlinear integer arithmetic).

Other planned enhancements include generation of concrete solutions to satisfiabil-
ity problems (and hence concrete counterexamples to BMC problems), and generation
of proof objects (independently checkable explanations for the decisions made by ICS).
We expect that the latter will also improve the interaction between core ICS and its SAT
solver, and thereby further increase the performance of full ICS.

ICS focuses on providing full automation for the cases where that is effective; we
do not intend to extend ICS to a general theorem prover. However, just as our origi-
nal decision procedures made it possible for PVS (and its NSA-sponsored predecessor
EHDM) to have a different architecture and style of interaction than previous interac-
tive theorem provers [10], so the increased capability of ICS will allow future systems
to support new and more productive styles of human interaction. We intend to explore
these opportunities in our research with future versions of PVS, and to assist NSA to do
the same with its own systems.

ICS is freely available for noncommercial research purposes under license to SRI.
Please visit its home page atics.csl.sri.com .
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Abstract. We explore the combination of bounded model checking and induc-
tion for proving safety properties of infinite-state systems. In particular, we de-
fine a general � -induction scheme and prove completeness thereof. A main char-
acteristic of our methodology is that strengthened invariants are generated from
failed � -induction proofs. This strengthening step requires quantifier-elimination,
and we propose a lazy quantifier-elimination procedure, which delays expen-
sive computations of disjunctive normal forms when possible. The effectiveness
of induction based on bounded model checking and invariant strengthening is
demonstrated using infinite-state systems ranging from communication protocols
to timed automata and (linear) hybrid automata.

1 Introduction

Bounded model checking (BMC) [5, 4, 7] is often used for refutation, where one sys-
tematically searches for counterexamples whose length is bounded by some integer�

. The bound
�

is increased until a bug is found, or some pre-computed completeness
threshold is reached. Unfortunately, the computation of completeness thresholds is usu-
ally prohibitively expensive and these thresholds may be too large to effectively explore
the associated bounded search space. In addition, such completeness thresholds do not
exist for many infinite-state systems.

In deductive approaches to verification, the invariance rule is used for establishing
invariance properties � [11, 10, 13, 3]. This rule requires a property � which is stronger
than � and inductive in the sense that all initial states satisfy � , and � is preserved
under each transition. Theoretically, the invariance rule is adequate for verifying a valid
property of a system, but its application usually requires creativity in coming up with
a sufficiently strong inductive invariant. It is also nontrivial to detect bugs from failed
induction proofs.

In this paper, we explore the combination of BMC and induction based on the k-
induction rule. This induction rule generalizes BMC in that it requires demonstrating
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the invariance of � in the first
�

states of any execution. Consequently, error traces of
length

�
are detected. This induction rule also generalizes the usual invariance rule in

that it requires showing that if � holds in every state of every execution of length
�

,
then every successor state also satisfies � . In its pure form, however,

�
-induction does

not require the invention of a strengthened inductive invariant. As in BMC, the bound�
is increased until either a violation is detected in the first

�
states of an execution or

the property at hand is shown to be
�

-inductive. In the ideal case of attempting to prove
correctness of an inductive property, � -induction suffices and iteration up to a, possibly
large, complete threshold, as in BMC, is avoided. The

�
-induction rule is sound, but

further conditions, such as the restriction to acyclic execution sequences, must be added
to make

�
-induction complete even for finite-state systems [17].

One of our main contributions is the definition of a general
�

-induction rule and a
corresponding completeness result. This induction rule is parameterized with respect
to suitable notions of simulation. These simulation relations induce different notions of
path compression in that an execution path is compressed if it does not contain two sim-
ilar states. Many completeness results, such as

�
-induction for timed automata, follow

by simply instantiating this general result with the simulation relation at hand. For gen-
eral transition systems, we develop an anytime algorithm for approximating adequate
simulation relations for

�
-induction.

Whenever
�

-induction fails to prove a property � , there is a counterexample of
length

��� � such that the first
�

states satisfy � and the last state does not satisfy � . If
the first state of this trace is reachable, then � is refuted. Otherwise, the counterexample
is labeled spurious. By assuming the first state of this trace is unreachable, a spurious
counterexample is used to automatically obtain a strengthened invariant. Many infinite-
state systems can only be proven with

�
-induction enriched with invariant strengthen-

ing, whereas for finite systems the use of strengthening decreases the minimal
�

for
which a

�
-induction proof succeeds.

Since our invariant strengthening procedure for
�

-induction heavily relies on elim-
inating existentially quantified state variables, we develop an effective quantifier elim-
ination algorithm for this purpose. The main characteristic of this algorithm is that it
avoids a potential exponential blowup in the initial computation of a disjunctive normal
form whenever possible, and a constraint solver is used to identify relevant conjunc-
tions. In this way the paradigm of lazy theorem proving, as developed by the authors
for the ground case [7], is extended to first-order formulas.

The paper is organized as follows. Section 2 contains background material on en-
codings of transition systems in terms of logic formulas. In Section 3 we develop the
notions of reverse and direct simulations together with an anytime algorithm for com-
puting these relations. Reverse and direct simulations are used in Section 4 to state a
generic

�
-induction principle and to provide sufficient conditions for the completeness

of these inductions. Sections 5 and 6 discuss invariant strengthening and lazy quantifier
elimination. Experimental results with

�
-induction and invariant strengthening for vari-

ous infinite-state protocols, timed automata, and linear hybrid systems are summarized
in Section 7. Comparisons to related work are in Section 8.
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2 Background

Let ���������
	���
�
�
������
� be a set of variables interpreted over nonempty domains ��	
through ��� , together with a type assignment � such that ����������� ��� . For a set of
typed variables � , a variable assignment is a function ! from variables �#"#� to an
element of �����
� . The variables in � �$����� 	 ��
�
�
���� � � are also called state variables,
and a program state is a variable assignment over � .

All the developments in this paper are parametric with respect to a given constraint
theories % , such as linear arithmetic or a theory of bitvectors. We assume a computable
function for deciding satisfiability of a conjunction of constraints in % . A set of Boolean
constraints, &�'('*)$��%+� , includes all constraints in % and is closed under conjunction , ,
disjunction - , and negation ./
 Effective solvers for deciding the satisfiability problem
in &�'0'*)1�2%+� have been previously described [7, 6].

A tuple 34�5�76*��8:9 is a % -program over � , where interpretations of the typed variables
� describe the set of states, 6;"<&�'('=)���%>�4�?��� is a predicate that describes the initial
states, and 8@"A&�'('*)$��%5�B�DCE�?FG�7� specifies the transition relation between current states
and their successor states ( � denotes the current state variables, while �HF stands for the
next state variables). The semantics of a program is given in terms of a transition systemI

in the usual way.

For a program
I �J3B�K��6��L8:9 , a sequence of states MK�4N�OP�7N�	Q��
�
�
��7N��=� forms a

path through
I

if R O�ST�VUT� 8?�4N��L�7N��GWX	Y� . A state N is reachable in
I

if there is a path
M5�BN�OP�ZN�	Q��
�
�
Y�ZN��([�	��7NQ� through

I
and 6T�BN�O�� , and a state property �\"]%>�4�?� is invariant

in
I

iff �/�4NQ� holds for every reachable state N in
I

. A counterexample for a property
� is a path MK�4N�O^��
�
�
��7N��=� such that 6��4N�O�� and . �/�4N��*� , and the length _a`Yb>�VM+� of such a
counterexample is given by the number of states in this path.

Typical programming constructs can be rewritten into the program syntax presented
above. For example, Dijkstra’s guarded commands are encoded in terms of a disjunc-
tion of conjunctions of guards c�����	Q��
�
�
��L�T�=� and updates �TF� �<dP	�����	���
�
�
��L�T�=� for all
variables �T� . Programs with external, non-deterministic inputs are defined by partition-
ing the set of variables into input variables, which are unconstrained, and the other state
variables, whose next-state values are constrained by the transition relation.

Throughout this paper we use timed automata [2], which are state-transition graphs
augmented with a finite set of real-valued clocks, as a prototypical class of infinite-state
systems. Decidability of the model-checking problem for timed automata rests on the
fact that the space of clock valuations is partitioned into finitely many clock regions.
Two clock valuations e 	 �Legf that belong to the same region are (region) equivalent,
denoted as e 	ihkjYl egf . This region equivalence is a stable quotient relation, that is,
whenever m h]j�lon and 8?�Vm(�7m�Fa� , there exists a state n F such that 8p� n � n F1� and m�F hkj�l
n F [2]. Encoding of timed automata in terms of logical programs with linear arithmetic
constraints are described in [19]. In particular, program states consist of a location and
nonnegative real interpretations of clocks. For timed automata we restrict ourselves to
proving so-called clock constraints � , such that m h j�l n implies that �q�Bmg� iff �/� n � .
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3 Direct and Reverse Simulation

The notions of direct and reverse simulation as developed here lay out the foundation
for the completeness results in Section 4.

Definition 1 (Direct / Reverse Simulation). Let
I � 3B�K��6��L8 9 be a program and �

a state formula over � . We define the functors
���

and
���

that map binary relations �
over � in the following way.

� � ��� ���BN 	 �7N�f��/���
�

if . �q�BN�	�� then . �q�BN f �
else 	�N F	 
Q8?�BN�	��ZN F 	 ��

�=N Ff 
�� �4N F 	 �7N Ff �?,@8?�4N f �7N Ff ���� ��� ���BN�	g�7N f �/���

�
if 6T�BN 	 � then 6T�BN�fQ�
else 	�N�F	 
Q8?�BN�F	 �ZN 	 ��

�=N�Ff 
�� �4N�F	 �7N�Ff �?,@8?�4N�Ff �7N�f��

A direct simulation over � with respect to � is any binary relation � over � that
satisfies ��� ��� ��� � . Similarly, a reverse simulation over � with respect to � is any
binary relation � over � that satisfies ��� ��� ��� � .
In contrast to reverse simulations, direct simulations depend on a state formula � . Also,
the definition of direct simulation is inspired by the notion of stable relations above.
Direct (reverse) simulations are usually denoted by � � ( � � ). The following direct and
reverse simulations are used as running examples throughout the paper.

Example 1. The empty relation ������� ��� false is a direct and a reverse simulation.

Example 2. Equality ( � ) between states is a direct and a reverse simulation.

Example 3. The relation N 	 ���QN�fH�$� 6��4N 	 �=, 6T�BN�fQ� is a reverse simulation, where 6 is
the predicate for describing the set of initial states of the given program.

Example 4. Now, consider programs 3B�K��6��L8:9 with inputs such that input ���T� holds iff
� is an input variable. The relation

N�	 � �+N f �$� for all variables x "i� 
 input �V�T� or Ng	��V�T�K� N f �V�T� ,
with NP�V�T� denoting the value of the variable � in the state N , is a reverse simulation,
since the values of the input variables are not constrained by the predicate 6 and their
next values are not constrained by 8 . Obviously, for transition systems with inputs, the
relation N�	 � ��N f is weaker than � , and therefore gives rise to shorter paths.

Example 5. We now consider timed automata programs and clock constraints. The
region equivalence h]j�l , which give rise to finitely many clock regions, is stable, and
therefore a direct simulation.

The notions of direct and reverse simulation are modular in the sense that the union
of direct (reverse) simulations is also a direct (reverse) simulation.

Proposition 1 (Modularity). If � 	 and � f are direct (reverse) simulations, then � 	
C�� f is also a direct (reverse) simulation.
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This property follows directly from the definitions of direct (reverse) simulations in
Definition 1 and from the monotonicity of the functors

���
and

���
. For example, the

reverse simulations � � and � � in Examples 3 and 4 may be combined to obtain a new
reverse simulation.

Given a program
I � 3B�K��6��L8:9 and a property � , the associated largest direct (re-

verse) simulation relation ��� ( ��� ) is obtained as the greatest fixpoint of the functor
� �

(
� �

) in Definition 1. These fixpoints exist, since
� �

and
� �

are monotonic. However, the
fixpoint iterations are often prohibitively expensive, and a direct (reverse) simulation is
only obtained on convergence of the iteration. The iteration in Proposition 2 provides
a viable alternative in that a reverse (direct) simulation is refined to obtain a stronger
reverse (direct) simulation. The proof of the proposition below follows from the defi-
nitions of reverse (direct) simulations, from the monotonicity of the functors

� �
(
� �

),
and from modularity (Proposition 1).

Proposition 2 (Anytime Iteration). If � � ��� � � is a reverse (direct) simulation, then
for all � ���

the relation � �	� � ( � �
� � ) is also a reverse (direct) simulation:

� ��� OH��� � � � �
� OH�$� � �� ��� � �$� � �	� �([�	/C ��� ��� �	� �([�	�� � �
� ����� � �
� �([�	/C ��� ��� �
� �([�	��
Consequently, this iteration gives rise to an anytime algorithm for computing direct
(reverse) simulations, and equality � , for example, may be used as seed, since it is
both a direct and a reverse simulation (see Example 2). Also, quantifier elimination
algorithms such as the one in Section 6 may be used in this iteration.

4 Completeness of � -Induction

Given the notions of direct and reverse simulations, we develop sufficient conditions
for proving completeness of

�
-induction. These results are based on restricting paths to

not contain states that are similar with respect to a given direct or reverse simulation.
For direct (reverse) simulations we define a compressed path w.r.t. to the given direct
(reverse) simulation as a path M5�BNQOP�ZNQ	���
�
�
Y�ZN��=� not containing any NQ� , N�
 with �����
( ����� ) such that N�� directly (reversely) simulates N�
 .
Definition 2 (Path Compression).

– A path M����0�BN�OP�7N�	Q��
�
�
��7N��=� is compressed w.r.t. the direct simulation � � if:

M����0�BN�O0�7N�	Q��
�
�
��7N��=�q���;MK�4N�OP�7N�	Q��
�
�
��7N��=�p, �
O�S�
YU
��S
� N�����

� N�
^

– A path M�� �P�BN�OP�ZN�	Q��
�
�
Y�ZN��*� is compressed w.r.t. the reverse simulation � � if:

M�� �P�BN�O0�7N�	Q��
�
�
��7N��=�/���DM5�4N�OP�7N�	Q��
�
�
��7N��=�p, �
O�ST�VU�
YS
� N��!��

� N!
g

A path that is compressed with respect to the reverse and the direct simulations � � and� � is denoted by M�� �#" � .
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��� ��� ��� ���

Fig. 1. Incompleteness of � -induction.

For example, a path M5�4N�OP��
�
�
��ZN��=� is compressed w.r.t. the reverse simulation ( � )
from Example 2 iff it is acyclic. Moreover, given the reverse simulation � � from Ex-
ample 3, a path M5�4N�O0��
�
�
Y�ZN��=� is compressed w.r.t. � � iff it contains at most one initial
state. Obviously, for transition systems with inputs, the relation ( ��� ) (see Example 4) is
weaker than ( � ), and therefore give rise to shorter compressed paths. We have collected
all ingredients for defining

�
-induction for arbitrarily compressed paths.

Definition 3 (
�

-Induction). Let
I � 34�5�76*��8:9 be a program,

�
an integer, � � a re-

verse simulation, and � � a direct simulation. The induction scheme of depth
�

, IND � �#" � � � �
allows one to deduce the invariance of � in

I
if the following holds.

– 6��4N�OQ�p, M�� �#" �0�BN�O0��
�
�
Y�7N	��[�	���
 �/�4N�OQ�p,�
�
�
p, �q�4N��Q[�	��
– �q�BN��*�?, 
�
�
p, �q�BN��gW���[�	��?,@M�� �#" �0�BN��
��
�
�
��ZN��gW
����
 �q�4N��^W
�g�

For example, given the empty relationship � � from Example 1, IND ��� reduces to
the naive, incomplete

�
-induction on arbitrary paths. Consider, for example, the system

in Figure 1 and a property � , which is assumed to hold only in m�� . Now, the execu-
tion sequence m���� m���� 
�
�
�� m��� ��� �

�
� m�� is not

�
-inductive, but it is ruled out under

the acyclic path restriction. The complete
�

-induction schemes in [17], which consider
only acyclic paths and paths that only visit initial states once can be recovered by instan-
tiating Definition 3 with the relations ( � ) (Example 2) and ( � � ) (Example 3), respec-
tively. Since both ( � ) and ( � � ) are reverse simulations, an induction scheme restricted
to acyclic paths visiting initial states at most once is obtained by modularity (Proposi-
tion 1).

Completeness of
�

-induction relies heavily on the notion of path compression. We
now state the main lemma.

Lemma 1 (Compressing non- M�� �#" � paths). Let M5�BN�OP��
�
�
��ZN��=� be a given path; then:

1. There exists a M�� � - compressed path M�� � �Vm O ��
�
�
���m�� � , s.t. m�� � N � and ����� .
2. There exists a M���� - compressed path M�� �P�Bm O ��
�
�
Y�7m�� � , s.t. m O � N O and ��� � .

Proofsketch. Assume a path MK�BN O ��
�
�
��ZN � � , which is not compressed w.r.t. � � . By
Definition 1 it follows that there are states N � �7N 
 " M5�BN O ��
�
�
��7N � � such that N � � � N 
 ,
and � � � . We distinguish two cases. First, if N � is an initial state, then so is N 
 , and
therefore a shorter path M5�BN 
 ��
�
�
��7N � � is obtained as a counterexample. Second, if N � is
not an initial state, then NQ� �� N�O , and there exists a NQ�V[�	 such that 8p�BN��V[�	��7N��B� . Since
N�� � � N�
 it follows by Definition 1 that there is a state NaF�V[�	 , such that NQ��[�	�� � N�F�V[�	 and
8?�BN�F�V[�	 �ZN�
�� . If N���[�	 is initial state, then so is NQF��[�	 , and since � � � a shorter path
M�� �0�BN�F��[�	 �ZN�
���
�
�
��7N��=� is obtained. If N��V[�	 is not initial, by repeating the above argument
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a shorter path is constructed. In both cases a shorter path is obtained, if such path is not
a compressed path, then it is further reduced. The proof for M � � - compressed paths
works analogously.

IND � � " � � � � is complete if: � is an invariant of
I

iff there is a
�

such that IND � � " � � � ��� �>� .
Now, completeness of

�
-induction follows from the main lemma 1 above.

Theorem 1 (Completeness). IND � � " � � � � is a complete proof method iff there is an
upper bound on the length of the paths M�� � " �P�BN O ��
�
�
Y�ZN � � .
Using the simulation from Example 2, Theorem 1 is instantiated to obtain the following
complete

�
-induction for finite-state systems.

Corollary 1. Let
I

be a finite-state program over � and � a state property in � ; then
IND � � � � induction is complete.

In general,
�

-induction for ( � ) is not complete for infinite-state systems. Consider, for
example, the program

I � 3B6*��8:9 over the integer state variable � with 6]� �V�A� � �
and 8 � ���TF � � ��� � , and the formula ������ . Obviously, it is the case that ������ is
invariant in

I
, but there exists no

� "E6 � such that the property is proven by IND � � � � .
However,

�
-induction is complete for timed automata, since the equivalence relation

h jYl is a direct simulation (Example 5), and an upper bound on the length of the paths
M��
	����4N�OP��
�
�
��ZN��=� is given by the number of clock regions.

Corollary 2. Let
I

be a timed automata program over the clock evaluations 
 and �
a clock constraint in 
 ; then IND � 	�� � � � induction is complete.

Similar results are obtained for other direct and reverse simulations and combinations
thereof.

5 Invariant Strengthening

Whenever
�

-induction fails to prove a property � , there is a counterexample M��
N � �ZN �gWX	 ��
�
�
��7N �gW�� such that the first

�
states satisfy � whereas the last state N �gW�� does

not satisfy this property. If N � is indeed reachable, then � is not invariant. Otherwise,
the counterexample is labeled as spurious and it is inconclusive whether � is invariant
or not. However, by assuming N � to be unreachable, such a spurious counterexample is
used to obtain a strengthened invariant � ,H.q�BN � � .

Consider, for example, the property .q�Bm � � for the system in Figure 1. Induction
of depth

� � � fails, and the counterexample m	� � m�� is obtained. Now, .q�Vm��Q� is
strengthened to obtain .q�Vm��Q�=,�.q�Bm��Q� , which is proven using � -induction. More gener-
ally, whenever the induction step of IND � � " � � � � fails, the formula ���4N � ��
�
�
��7N �gW
� �/���
�/�4N � �=, 
�
�
*, �q�4N �^W
��[�	 �=,pM�� � " �P�4N � ��
�
�
��ZN �^W
� �=,H. �q�BN �gW
� � is satisfiable, and each
satisfying assignment describes a counterexample for the induction step. Thus, we de-
fine the predicate �H�BNQ� for representing the set of possibly unreachable states, which
may reach the bad state in

�
steps by means of a M�� �#" � path, �H�4NQ�5� � N��^WX	Q��
�
�
��7N��gW
�0
����4N^�ZN��gWX	Q��
�
�
��7N��gW��g� .

Now, � is strengthened as � ,H.��H�4NQ� , and quantifier elimination is used for transform-
ing this strengthened formula into an equivalent Boolean constraint formula. For the
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� � � � � �� ��F
�$� � � � �
� � � � -� � � � �

� ��F���� �
� � � � � �� � F���� � � � �

� � � � -
.q� � � � � � �

� � F���� �
Fig. 2. Bakery Mutual Exclusion Protocol.

general case, we use the quantifier elimination procedure in Section 6. Notice, how-
ever, that for special cases such as guarded command languages, the quantifiers in �H�BNQ�
are eliminated using purely syntactic operations such as substitution, since all quan-
tifications are over “next-state” variables � for which there are explicit solutions d �L
 � .
An example might help to illustrate the combination of

�
-induction, strengthening, and

quantifier elimination.

Example 6. Consider the usual stripped-down version of Lamport’s Bakery protocol in
Figure 2 with the initial value

�
for both counters � � and � � and the mutual exclusion

property ��� defined by .q����� � � � �?,	��� � � � �P� . We apply � -induction with the
empty simulation relation ��� . The base step holds and the induction step fails, thus we
obtain

�H�4N����/�$� � N��gWX	Q�ZN��gW f �ZN��gW � 

��� �BN��*�=,���� �BN��gWX	��=,
��� �4N��gW f �=,pM�� � �BN����ZN��^WX	Q�ZN��^W f �ZN��^W � �=,H.
��� �BN��gW � �

with states N�� of the form ����� ��� � � ��� ����� � �L� � � �B� . Since the transitions of the Bakery
protocol are in terms of guarded commands, simple substitution is used to obtain a
quantifier-eliminated form, �H�4N�� , defined as

�H�BNQ�/��� ����� �:� � �X,���� � � � � , � � � � �=- ����� � � � � ,���� � � � � , � �:� � � .
Now, the strengthened property ��� �BNQ�=,�. �H�BNQ� is proven using � -induction.

6 Quantifier elimination

Given a quantified formula ���������^
 � with � " &�'('=)��2%+� , quantifier-elimination pro-
cedures usually work by transforming � into disjunctive normal form (DNF) and dis-
tributing the existential quantifiers over disjunctions. Thus, one is left with eliminating
quantifiers from a set of existentially quantified conjunctions of literals. We assume as
given such a procedure % -qe. The main drawback of these procedures is that there is a
potential exponential blowup in the initial transformation to DNF and % -qe might even
return further disjunctions (as is the case for Presburger arithmetic); this problem has
been addressed for the Boolean case by McMillan [14].

The quantifier elimination problem for invariant strengthening, as discussed in Sec-
tion 5 allows for a purely syntactic quantifier elimination as long as we are restricting
ourselves to guarded command programs. In these cases, % -qe just applies the substitu-
tion rule ( ���"��������0� �/� )

� �(�+
 ���i� �/�+, �q�V�T�L� iff �/� �/� ;
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procedure qe( ������� , � )�
	 �
false

loop� 	 �
next-solution 
����

if
� �

false then return
���� 	 ���

-qe 
���������� � ��
	 ����� ���
� 	 � ����� ���

Fig. 3. Lazy Quantifier Elimination.

possibly followed by simplification. Quantifier elimination by substitution has already
been used in the context of model checking, for example, by Coudert, Berthet, and
Madre [15] and more recently by Williams, Biere, Clarke, Gupta [20], and Abdulla,
Bjesse, Eén [1]. Another % -qe function is used in McMillan’s [14] quantifier elimination
algorithm based on propositional SAT solving, in that his % -qe �Ve � �gNP� ��� simply deletes
the literals in � , which contain a variable in vars. In contrast, depending on the back-
ground theory, arbitrary complex quantifier elimination procedures, such as the ones for
Presburger arithmetic or real-closed fields, can also be used here.

As motivated above, the initial DNF computation should usually be avoided when
possible. Given a set of existentially quantified variables ������� and a quantifier-free for-
mula � in &�'('=)��2%+� , the algorithm !�`0� �������0� �>� in Figure 3 returns a formula in &�'('=)1�2%+�
which is equivalent to ���������P
 � . The procedure !�` relies on a satisfiability solver for
formulas � " &�'('=)��2%+� , which is assumed to enumerate representations of sets of sat-
isfiable models in terms of conjunctions of literals in � . Such a solver is described, for
example, in [7, 6]. These solutions are supposed to be enumerated by successive calls
to next-solution in Figure 3. Since there are only a finite number of solutions in terms of
subsets of literals, the function !�` is terminating. Moreover, minimal solutions or good
over-approximations thereof, as produced by the lazy theorem proving algorithm [7, 6],
accelerate convergence.

The variable � in Figure 3 stores the current solution obtained by next-solution, and
the procedure % -qe applies quantifier elimination for conjunction. In many cases, % -qe
just applies the substitution rule to remove quantified variables. In order to obtain the
next set of solutions, we rule out the current solutions by updating � with the value . �QF
instead of . � , since . ��F is more restrictive.

Thus, the quantifier elimination procedure in Figure 3 avoids eager computation of
a disjunctive normal form. Moreover, a solver for &�'('=)1��%+� is used to guide the search
for relevant “conjunctions” in � . In this way, the !�` algorithm extends the lazy theorem
proving paradigm described in [7, 6] to the case of first-order reasoning.

Example 7. Consider

�(�
	g� � 	
 �L����O � �X-p�*O � �K- � O#" �Q�=,p�
	 �#�*O%$ �X, � 	 � � O � �Q�
- �L����O �&$��X-���O:�'$ �0�=,?�
	 �#�*O � � , � 	 � � O%$ ���L�*,?��	 � �
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A first satisfiable conjunction of literals is obtained by, say

� �$� � O " �X,�� 	 �#� O $ �X, � 	 � � O � �X,p� 	 � �
.

Now, application of the substitution rule yields � F ��� � O " �X,p� O $ � � �
, and, after

updating � with . ��F a second solution is obtained as

� �$�D�*O �&$ �K,?�
	 �D�*O � � , � 	 � � O $ � ,?��	 � �
.

Again, applying the substitution rule, one gets ��F����;� O �&$ �K,�� O � � � �
, and, since

there are no further solutions, the quantifier-eliminated formula is � � O " �X,p� O $ � �� �=- ��� O �&$ �K,�� O � � � � � .
7 Experiments

We describe some of our experiments with
�

-induction and invariant strengthening.
Our benchmark examples include infinite-state systems such as communication proto-
cols, timed automata and linear hybrid systems.1 In particular, Table 1 contains experi-
mental results for the Bakery protocol as described earlier, Simpson’s protocol [18] to
avoid interference between concurrent reads and writes in a fully asynchronous system,
well-known timed automata benchmarks such as the train gate controller and Fischer’s
mutual exclusion protocol, and three linear hybrid automata benchmarks for water level
monitoring, the leaking gas burner, and the multi-rate Fischer protocol. Timed automata
and linear hybrid systems are encoded as in [19]. Starting with

� � � we increase
�

until
�

-induction succeeds. We are using invariant strengthening only in cases where
syntactic quantifier elimination based on substitution suffices. In particular, we do not
use strengthening for the timed and hybrid automata examples, that is, % -qe tries to apply
the substitution rule, if the resulting satisfiability problems for Boolean combinations
of linear arithmetic constraints are solved using the lazy theorem proving algorithm
described in [7] and implemented in the ICS decision procedures [9].

System Name Proved with k Time Refinements
Bakery Protocol 3 0.21 1
Simpson Protocol 2 0.16 2
Train Gate Controller 5 0.52 0
Fischer Protocol 4 0.71 0
Water Level Monitor 1 0.08 0
Leaking Gas Burner 6 1.13 0
Multi Rate Fischer 4 0.84 0

Table 1. Results for k-induction. Timings are in seconds.

1 These benchmarks are available at http://www.csl.sri.com/
�

demoura/cav03examples
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The experimental results in Table 1 are obtained on a 2GHz Pentium-IV with 1Gb
of memory. The second column in Table 1 lists the minimal

�
for which

�
-induction

succeeds, the third column includes the total time (in seconds) needed for all inductions
from

�
to

�
, and the fourth column the number of strengthenings. Timings do not include

the one for quantifier elimination, since we restricted ourselves to syntactic quantifier
elimination only. Notice that invariant strengthening is essential for the proofs of the
Bakery protocol and Simpson’s protocol, since k-induction alone does not succeed for
any

�
.

Simpson’s protocol for avoiding interference between concurrent reads and writes
in a fully asynchronous system has also been studied using traditional model check-
ing techniques. Using an explicit-state model checker, Rushby [16] demonstrates cor-
rectness of a finitary version of this potentially infinite-state problem. Whereas it took
around � � � seconds for the model checker to verify this stripped-down problem,

�
-

induction together with invariant strengthening proves the general problem in a fraction
of a second. Moreover, other nontrivial problems such as correctness of Illinois and
Futurebus cache coherence protocols, as given by [8], are easily established using � -
induction with only one round of strengthening.

8 Related Work

We restrict this comparison to work we think is most closely related to ours. Sheeran,
Singh, and Stålmarck’s [17] also use k-induction, but their approach is restricted to
finite-state systems only. They consider

�
-induction restricted to acyclic paths and each

path is constrained to contain at most one initial state. These inductions are simple
instances of our general induction scheme based on reverse and direct simulations.
Moreover, invariant strengthening is used here to decrease the minimal

�
for which�

-induction succeeds.
Our path compression techniques can also be used to compute tight completeness

thresholds for BMC. For example, a compressed recurrence diameter is defined as the
smallest � such that 6T�BN O �?,@M�� �#" �P�BN O ��
�
�
��7N � � is unsatisfiable. Using equality ( � ) for
the simulation relation, this formula is equivalent to the recurrence diameter in [4]. A
tighter bound of the recurrence diameter, where values of input variables are ignored, is
obtained by using the reverse simulation � � . In this way, the results in [12] are obtained
as specific instances in our general framework based on reverse and direct simulations.
In addition, the compressed diameter is defined as the smallest � such that

6��4N�O���,]M�� � " � �4N�O0��
�
�
��7N��=��, �([�	�
� � O
. M � �#" �� �BN�OP�7N��4�

is unsatisfiable, where M � � " �� �BN�O0�7N��B� �$� �=N�	Q��
�
�
��7N���[�	�
 M�� � " �^�4N�O0�7N�	���
�
�
Y�7N��V[�	g�7N��B� holds
if there is a relevant path from N�O to N�� with � steps. Depending on the simulation re-
lation, this compressed diameter yields tighter bounds for the completeness thresholds
than the ones usually used in BMC [4].
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9 Conclusion

We developed a general
�

-induction scheme based on the notion of reverse and direct
simulation, and we studied completeness of these inductions. Although any

�
-induction

proof can be reduced to a � -induction proof with invariant strengthening, there are cer-
tain advantages of using

�
-induction. In particular, bugs of length

�
are detected in the

initial step, and the number of strengthenings required to complete a proof is reduced
significantly. For example, a � -induction proof of the Bakery protocol requires three
successive strengthenings each of which produces

�
new clauses. There is, however,

a clear trade-off between the additional cost of using
�

-induction and the number of
strengthenings required in � -induction, which needs to be studied further.
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9. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonization and Solving.
In Proceedings of CAV’2001, volume 2102 of Lecture Notes in Computer Science, pages
246–249. Springer-Verlag, 2001.

10. S. M. German and B. Wegbreit. A synthesizer of inductive assertions. IEEE Transactions
on Software Engineering, 1(1):68–75, Mar. 1975.

11. S. M. Katz and Z. Manna. A heuristic approach to program verification. In N. J. Nilsson,
editor, Proceedings of the 3rd IJCAI, pages 500–512, Stanford, CA, Aug. 1973. William
Kaufmann.

12. D. Kroening and O. Strichman. Efficient computation of recurrence diameters. In Proceed-
ings of VMCAI’03, Jan. 2003.

13. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving ab-
stractions for the verification of concurrent systems. Formal Methods in System Design,
6(1):11–44, Jan. 1995.

14. K. McMillan. Applying SAT methods in unbounded symbolic model checking. In Computer-
Aided Verification, CAV 2002, volume 2404 of LNCS. Springer-Verlag, 2002.

101



13

15. O. Coudert, C. Berthet, and J.C. Madre. Verification of synchronous sequential machines
using symbolic execution. In Proceedings of the International Workshop on Automatic Ver-
ification Methods for Finite State Systems, volume 407 of LNCS, pages 365–373, Grenoble,
France, June 1989. Springer-Verlag.

16. J. Rushby. Model checking Simpson’s four-slot fully asynchronous communication mecha-
nism. Technical report, CSL, SRI International, Menlo Park, Menlo Park, CA, July 2002.
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